微型内燃机工况下C1–C4烷烃着火延迟数值模拟
收稿日期: 2016-07-05
修回日期: 2016-08-27
网络出版日期: 2016-10-28
基金资助
国家重点基础研究发展计划(2014CB239600);
国家自然科学基金(51336010)
Auto-Ignition Delay Time of C1–C4 Alkanes under Micro-Internal Combustion Engine Operative Conditions
Received date: 2016-07-05
Revised date: 2016-08-27
Online published: 2016-10-28
燃料着火延迟时间对采用蓄热自着火方式的微型内燃机非常重要。利用Chemkin-Pro软件,分别对甲烷、乙烷、丙烷和正丁烷空气混合气在微型内燃机运行工况下进行着火延迟时间模拟计算,探究初始温度(500 K ~ 1 000 K)、压力(1 ~ 10 atm)和当量比(0.6 ~ 1.2)对着火延迟时间的影响。同时分析了微型内燃机扫气不尽的尾气残留组分(N2、CO2和H2O)对正丁烷着火延迟时间的影响。结果表明:在四种燃料中,正丁烷的低温着火延迟特性最佳,是一种适合于采用蓄热自着火方式的微型内燃机燃料;初始温度、压力的提高和当量比的增大有利于燃料着火延迟时间的缩短;尾气残留使得燃料着火延迟时间变长,着火延迟特性变差,尾气各组分的热效应和基元反应对燃料着火延迟有着不同的影响机制。
张云路 , 霍杰鹏 , 蒋利桥 , 李 星 , 赵黛青 . 微型内燃机工况下C1–C4烷烃着火延迟数值模拟[J]. 新能源进展, 2016 , 4(5) : 399 -403 . DOI: 10.3969/j.issn.2095-560X.2016.05.010
The ignition delay time is a crucial parameter in the glow plug ignition of micro-internal combustion engine (MICE). The effects of important operating parameters, such as the fuel species (methane, ethane, propane and n-butane), the initial temperature (500 K ~ 1 000 K), the initial pressure (1 ~ 10 atm) and equivalence ratio (0.6 ~ 1.2), on the ignition delay times were carried out via numerical simulation with Chemkin-Pro software. In addition, the effects of the residual exhaust gas caused by halfway scavenging on the ignition delay times of n-butane/air mixtures were investigated. The result shows that n-butane is a suitable fuel for MICE with glow plug ignition because of its short ignition delay time. Meanwhile, the ignition delay time decreases with the increase of the initial temperature, pressure and equivalence ratio. Moreover, the residual exhaust gas causes an increase of the ignition delay time of n-butane/air mixtures, and components of the exhaust have separated influence on the ignition delay time due to their different thermal and the chemical kinetic effects.
[1] DAHM W J A, NI J, MIJIT K, et al. Micro internal combustion swing engine (MICSE) for portable power generation systems[C]//DAHM W, UNIV M, ARBOR A. 40th AIAA Aerospace Sciences Meeting & Exhibit, Aerospace Sciences Meetings. Reno, NV, U.S.A: AIAA, 2001, 1050: 48109-2140. DOI: 10.2514/6.2002-722.
[2] JU Y, MARUTA K. Microscale combustion: technology development and fundamental research[J]. Progress in energy and combustion science, 2011, 37(6): 669-715. DOI: 10.1016/j.pecs.2011.03.001
[3] 曹海亮. 微尺度燃烧特性及微能源系统的研制[D]. 合肥: 中国科学技术大学, 2006.
[4] FU K, KNOBLOCH A J, MARTINEZ F C, et al. Design and fabrication of a silicon-based MEMS rotary engine[C]//Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition. Denver, Colorado, USA: ASME, 2001: 875-880.
[5] LIU Q F, JIANG L Q, YANG W B, et al. Experimental study of flame propagation in single chamber of MICSE[C]// Proceedings pf the 10th Asia-Pacific Conference on Combustion, ASPACC 2015. Beijing, China: ASPACC, 2015.
[6] MIJIT K. Design, analysis, and experimentation of a micro internal combustion swing engine[M]. Ann Arbor, US: University of Michigan, 2000.
[7] 郭志平, 张仕民. 新型二冲程微型摆式内燃机的设计方法[M]. 北京: 国防工业出版社, 2013.
[8] POMPA J, KARNANI S, DUNN-RANKIN D. Performance characterization and combustion analysis of a centimeter- scale internal combustion engine[J]. Journal of aeronautics, astronautics and aviation. series a, 2008, 40(4): 205-216.
[9] DESIGN R. Chemkin-Pro 15101[CP]. San Diego, CA: Reaction Design, 2010.
[10] METCALFE W K, BURKE S M, AHMED S S, et al. A hierarchical and comparative kinetic modeling study of C1−C2 hydrocarbon and oxygenated fuels[J]. International journal of chemical kinetics, 2013, 45(10): 638-675. DOI: 10.1002/kin.20802.
[11] HEALY D, DONATO N S, AUL C J, et al. n-Butane: Ignition delay measurements at high pressure and detailed chemical kinetic simulations[J]. Combustion and flame, 2010, 157(8): 1526-1539. DOI:10.1016/ j.combustflame.2010.01.016.
[12] SABIA P, DE JOANNON M, LAVADERA M L, et al. Autoignition delay times of propane mixtures under MILD conditions at atmospheric pressure[J]. Combustion and flame, 2014, 161(12): 3022-3030. DOI: 10.1016/j.combustflame.2014.06.006
[13] DE SAIN J D, KLIPPENSTEIN S J, MILLER J A, et al. Measurements, theory, and modeling of OH formation in ethyl+O2 and propyl+O2 reactions[J]. The journal of physical chemistry a, 2003, 107(22): 4415-4427. DOI: 10.1021/jp0221946.
[14] HEALY D, KOPP M M, POLLEY N L, et al. Methane/ n-butane ignition delay measurements at high pressure and detailed chemical kinetic simulations[J]. Energy & fuels, 2010, 24(3): 1617-1627. DOI: 10.1021/ef901292j.
[15] SABIA P, LAVADERA M L, GIUDICIANNI P, et al. CO2 and H2O effect on propane auto-ignition delay times under mild combustion operative conditions[J]. Combustion and flame, 2015, 162(3): 533-543. DOI: 10.1016/j.combustflame.2014.08.009
[16] WANG L, LIU Z H, CHEN S, et al. Physical and chemical effects of CO2 and H2O additives on counterflow diffusion flame burning methane[J]. Energy & fuels, 2013, 27(12): 7602-7611. DOI: 10.1021/ef401559r.
[17] ZHANG Y J, HUANG Z H, WEI L J, et al. Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures[J]. Combustion and flame, 2012, 159(3): 918-931. DOI: 10.1016/j.combustflame.2011.09.010
/
〈 |
|
〉 |