欢迎访问《新能源进展》官方网站!今天是
论文

太阳能-地热能联合发电系统研究进展

  • 徐琼辉 ,
  • 龚宇烈 ,
  • 骆 超 ,
  • 姚 远 ,
  • 陆振能 ,
  • 马伟斌
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640
徐琼辉(1978-),女,博士,副研究员,主要从事地热能利用过程中流体流动和传热研究。

收稿日期: 2016-12-29

  修回日期: 2016-02-04

  网络出版日期: 2016-10-28

基金资助

国家自然科学基金(51406212);
广东省科技计划项目(2013B091500059)

Research Progress on Hybrid Solar-Geothermal Power Generation

  • XU Qiong-hui ,
  • GONG Yu-lie ,
  • LUO Chao ,
  • YAO Yuan ,
  • LU Zhen-neng ,
  • MA Wei-bin
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China

Received date: 2016-12-29

  Revised date: 2016-02-04

  Online published: 2016-10-28

摘要

将多种新能源联合开发利用,使之能够取长补短,是未来新能源发展的重要方向之一。世界第一座太阳能–地热能联合电厂已经建成发电,与其相关的研究工作也已蓬勃开展。从已有的研究结果看,太阳能和地热能主要有两种结合方式——以地热能为主的联合发电系统和以太阳能为主的联合发电系统;研究内容主要围绕提高太阳能、地热能的利用效率,增加系统发电量而展开,根据系统处于稳态和非稳态时不同的运行特征,评估系统的热力性能和经济性能,指出保证系统长期稳定运行应考虑的问题。研究表明,联合发电系统是一种比单一太阳能发电系统或者单一地热能发电系统更加优越的能源利用模式。

本文引用格式

徐琼辉 , 龚宇烈 , 骆 超 , 姚 远 , 陆振能 , 马伟斌 . 太阳能-地热能联合发电系统研究进展[J]. 新能源进展, 2016 , 4(5) : 404 -410 . DOI: 10.3969/j.issn.2095-560X.2016.05.011

Abstract

Developing and using combined new energy sources is an important direction of development for new energy in future. The first Hybrid Solar-Geothermal Power station has been built, and related research on this field has been carried out vigorously. According to the recent research progress, we know that currently there are two hybrid types, one is mainly based on geothermal energy, and the other is mainly based on solar energy. Conducted researches mainly focused on improving thermal efficiency of solar and geothermal energy, increasing generating capacity. And besides, the assessment studies of thermal performance and economic performance under steady state and unsteady state, and long-term stable operation of the system are also presented in many articles. The literature review indicate that hybrid power generation mode present more advantage in energy efficient use compared to the stand-alone mode. 

参考文献

[1] GREENHUT A D. Modeling and analysis of hybrid geothermal-solar thermal energy conversion systems[D]. Cambridge, Boston: Massachusetts Institute of Technology, 2010.

[2] ZHOU C, DOROODCHI E, MUNRO I, et al. A feasibility study on hybrid solar-geothermal power generation[C]//New Zealand geothermal workshop 2011 proceedings. Auckland, New Zealand: [s.n.], 2011.

[3] LENTZ Á, ALMANZA R. Parabolic troughs to increase the geothermal wells flow enthalpy[J]. Solar energy, 2006, 80(10): 1290-1295. DOI: 10.1016/j.solener.2006. 04.010.

[4] GREENHUT A D, TESTER J W, DIPIPPO R, et al. Solar-geothermal hybrid cycle analysis for low enthalpy solar and geothermal resources[C]// Proceedings world geothermal congress 2010. Bali, Indonesia: [s.n.], 2010.

[5] 周刚, 倪晓阳, 李金锋, 等. 不受地理位置限制的地热和太阳能联合发电系统[J]. 地球科学—中国地质大学学报, 2006, 31(3): 394-398. DOI: 10.3321/j.issn:1000- 2383.2006.03.018.

[6] KIM W, CHOI J, CHO H. Performance analysis of hybrid solar-geothermal CO2 heat pump system for residential heating[J]. Renewable energy, 2013, 50: 596-604. DOI: 10.1016/j.renene.2012.07.020.

[7] 张丽英, 翟辉, 代彦军, 等. 一种地热与太阳能联合发电系统研究[J]. 太阳能学报, 2008, 29(9): 1086-1091. DOI: 10.3321/j.issn:0254-0096. 2008.09.007.

[8] 年越, 刘石. 地热与太阳能联合发电系统热力性能分析[J]. 热力发电, 2014, 43(9): 1-11. DOI: 10.3969/j.issn. 1002-3364.2014.09.001.

[9] ZHOU C, DOROODCHI E, MOGHTADERI B. An in-depth assessment of hybrid solar- geothermal power generation[J]. Energy conversion and management, 2013, 74: 88-101. DOI: 10.1016/j.enconman.2013. 05.014.

[10] LENTZ Á, ALMANZA R. Solar-geothermal hybrid system[J]. Applied thermal engineering, 2006, 26(14/15): 1537-1544. DOI: 10.1016/j.applthermaleng.2005. 12.008.

[11] GHASEMI H, SHEU E, TIZZANINI A, et al. Hybrid solar-geothermal power generation: Optimal retrofitting[J]. Applied energy, 2014, 131: 158-170. DOI: 10.1016/ j.apenergy.2014. 06.010.

[12] ASTOLFI M, XODO L, ROMANO M C, et al. Technical and economical analysis of a solar- geothermal hybrid plant based on an organic Rankine cycle[J]. Geothermics, 2011, 40(1): 58-68. DOI: 10.1016/ j.geothermics.2010.09.009.

[13] MIR I, ESCOBAR R, VERGARA J, et al. Performance analysis of a hybrid solar-geothermal power plant in Northern Chile[C]//World renewable energy congress 2011. Linkoping, Sweden: Linkoping University Electronic Press, 2011: 1281-1288. DOI: 10.3384/ecp110571281.

[14] 朱家玲. 太阳能-地热能混合发电系统优化初探[C]//首届中国太阳能热发电大会论文集. 敦煌: 天津大学地热中心, 2015: 727-762.

[15] LENTZ A. Geothermal–solar hybrid system in order to increase the steam flow for geothermic cycle in Cerro Prieto, Mexico[C]// Geothermal resources council 2003 annual meeting. USA, 2003: 543-546.

[16] ZHOU C, DOROODCHI E, MOGHTADERI B. Figure of merit analysis of a hybrid solar-geothermal power plant[J]. Engineering, 2013, 5: 26-31. DOI:10.4236/eng. 2013.51b.

[17] 冉鹏, 张树芳, 李国有. 太阳能-地热联合闪蒸发电方法探讨[J]. 新能源研究与利用, 2005(3): 27-28. DOI: 10.3969/j.issn.1001-5523.2005.03.009.

[18] BOGHOSSIAN J G. Dual-temperature Kalina cycle for geothermal–solar hybrid power systems[D]. Boston: Mechanical Engineering, Massachusetts Institute of Technology, 2011.

[19] AYUB M, MITSOS A, GHASEMI H. Thermo- economic analysis of a hybrid solar- binary geothermal power plant[J]. Energy, 2015, 87: 326-335. DOI: 10.1016/j.energy.2015.04.106.

[20] KROTHAPALLI A, GRESKA B. Concentrated solar thermal power[D]. USA: Florida State University, 2011.

文章导航

/