夏热冬暖地区居住建筑应对气候变化节能适应性
收稿日期: 2016-06-27
修回日期: 2016-07-26
网络出版日期: 2016-10-28
基金资助
广东省重大科技专项(2013A011404007);
广东省科技计划项目(2013B091500026)
Climate Change Adaptation Pathways for Residential Buildings in Hot Summer and Warm Winter Zone in China
Received date: 2016-06-27
Revised date: 2016-07-26
Online published: 2016-10-28
为研究夏热冬暖地区居住建筑应对气候变化的适应性,运用TRNSYS动态能耗模拟软件对该地区典型居住建筑能耗进行仿真,制定了居住建筑节能星级评估体系。以广州市为例,分析预测了广州2020年、2050年及2080年的气候变化,并提出应对气候变化的节能措施。研究表明:气温上升1℃,4.0、5.5及6.5星级建筑能耗将分别增长25%、20%及20%;在2080年,气温上升近3.5℃,4.0星级建筑CO2年排放量达53 t/m2,将4.0星建筑升级到5.5和6.5星级,每年可相应减排19.5 t/m2和23.2 t/m2;若以4.0星级建筑当前的CO2排放量为控制目标,则需把建筑围护结构热工性能提升到6.5星级水平,可以实现未来70年减排45%。
宋鑫焱 , 叶灿滔 , 马伟斌 . 夏热冬暖地区居住建筑应对气候变化节能适应性[J]. 新能源进展, 2016 , 4(5) : 411 -416 . DOI: 10.3969/j.issn.2095-560X.2016.05.012
In order to investigate the climate change adaptation pathways for residential buildings in hot summer warm winter zone in China, the building energy consumption rating schemes in this area were built based on the dynamic thermal performance of residential buildings by using TRNSYS software. The future climate change of Guangzhou in 2020s, 2050s and 2080s was analyzed, and then adaptation pathways were put forward. The results showed that an increase of 1 oC in global warming will induce the energy consumptions of 4.0, 5.5 and 6.5-star buildings by 25%, 20% and 20%, respectively. And if an increase of 3.5oC comes true in 2080s, annual CO2 emission of the 4.0-star building will reach 53 t/m2. However, if we retrofit and update the building to 5.5 or 6.5-star, 19.5 or 23.2 t/m2 reduction of CO2 emission can be obtained accordingly. Moreover, 45% reduction of CO2 emission in the future 70 years is available if the envelopes of current buildings can be retrofitted to 6.5-star.
[1] 刘大龙, 刘加平, 杨柳. 气候变化下我国建筑能耗演化规律研究[J]. 太阳能学报, 2013, 34(3): 439-444.
[2] 杨占红, 裴莹莹, 罗宏, 等. 国际碳排放特征演进及中国应对建议[J]. 气候变化研究进展, 2016, 12(3): 185-192. DOI: 10.12006/j.issn.1673-1719.2015.170.
[3] BP. BP Statistical Review of World Energy, June 2015[R]. London, 2015: 1-48.
[4] 卞家涛, 余珊萍. 碳减排问题研究综述与展望[J]. 华南理工大学学报(社会科学版), 2011, 13(5): 1-6. DOI: 10.3969/j.issn.1009-055X.2011.05.002.
[5] 郭洪旭, 黄莹, 赵黛青, 等. 基于情景分析的广东省建筑节能减排潜力研究[J]. 环境科学与技术, 2015, 38(12): 305-310.
[6] 林立身, 江亿, 燕达, 等. 我国建筑业广义建造能耗及CO2排放分析[J]. 中国能源, 2015, 37(3): 5-10. DOI: 10.3969/j.issn.1003-2355.2015.03.03.
[7] 刘涛. 基于气候变化下的办公建筑节能设计[D]. 西安: 西安建筑科技大学, 2010.
[8] REN Z G, CHEN Z D, WANG X M. Climate change adaptation pathways for Australian residential buildings[J]. Building and environment, 2011, 46(11): 2398-2412. DOI: 10.1016/j.buildenv.2011.05.022.
[9] 中华人民共和国住房和城乡建设部. 夏热冬暖地区居住建筑节能设计标准: JGJ 75-2012[S]. 北京: 中国建
筑工业出版社, 2013.
[10] KLEIN S A, BECKMAN W A, DUFFIE J A. TRNSYS–a transient simulation program[J]. Ashrae Transactions, 1976, 82.
[11] 叶灿滔, 马伟斌, 刘金平, 等. 基于谐波反应法的净化空调系统节能研究[J]. 华南理工大学学报(自然科学版), 2013, 41(12): 81-89. DOI: 10.3969/j.issn.1000- 565X.2013.12.014.
[12] DEWSBURY M A. Background to australian house energy rating[M] // The Empirical Validation of House Energy Rating (HER) Software for Lightweight Housing in Cool Temperate Climates. Switzerland: Springer International Publishing, 2015: 7-30. DOI: 10.1007/978- 3-319-14337-8_2.
[13] 陈元千, 胡建国. 预测油气田产量和储量的Weibull模型(为纪念克拉玛依油田勘探开发40周年而作)[J]. 新疆石油地质, 1995, 16(3): 250-255.
[14] 王冀. 中国地区极端气温变化的模拟评估及其未来情景预估[D]. 南京: 南京信息工程大学, 2008.
[15] HESSAMI M, GACHON P, OUARDA T B M J, et al. Automated regression-based statistical downscaling tool[J]. Environmental modelling & software, 2008, 23(6): 813-834. DOI: 10.1016/j.envsoft.2007.10.004.
[16] BELCHER S E, HACKER J N, POWELL D S. Constructing design weather data for future climates[J]. Building services engineering research & technology, 2005, 26(1): 49-61. DOI: 10.1191/0143624405bt112oa.
[17] JENTSCH M F, JAMES P A B, BAHAJ A S. CCWorldWeatherGen software: Manual for CCWorld- WeatherGen climate change world weather file generator[Z]. Southampton, GB: Sustainable Research Energy Group, University of Southampton, 2012.
[18] 王大川. 四川省制造业碳排放源分类与计量研究[D]. 成都: 成都理工大学, 2012.
/
〈 |
|
〉 |