一株脱硫菌株的分离鉴定及其对硫化物的去除效果验证
收稿日期: 2016-09-14
修回日期: 2016-10-21
网络出版日期: 2016-12-28
基金资助
国家科技支撑计划项目(2015BAD21B01)
Isolation and Identification of a Desulfurization Strain and Its Sulfide Removal Performance
Received date: 2016-09-14
Revised date: 2016-10-21
Online published: 2016-12-28
为获得适合生物脱硫工程应用的硫氧化细菌,取污水处理厂曝气池活性污泥,采用人工模拟硫化物废水作为硫源富集培养并经分离纯化,得到一株能够高效快速去除废水中硫化物的硫氧化细菌菌株DS-7。该菌为短杆状、长0.8 ~ 2 μm、宽0.6 ~ 0.8 μm、革兰氏阴性,最适生长温度为30℃,最适生长pH值为7.0。通过对该菌的16SrDNA序列测定,并结合其形态和生理特性鉴定,该菌株属于鞘氨醇杆菌属(Sphingobacterium)。Sphingobacterium sp. DS-7去除硫化物性能研究结果表明:当硫化物浓度为650 mg/L时,该菌的4 h硫化物去除率达到95%以上,相应的硫转化率最高达到45.08%,生成的单质硫颗粒形状为不规则八面体。
赵 鹏 , 李 东 , 周一民 , 刘晓风 , 廖银章 . 一株脱硫菌株的分离鉴定及其对硫化物的去除效果验证[J]. 新能源进展, 2016 , 4(6) : 425 -430 . DOI: 10.3969/j.issn.2095-560X.2016.06.001
In order to obtain sulfur-oxidizing bacteria for engineering application of biodesulfurization, the enrichment and acclimation of aerobic activated sludge was carried out by using artificial sulfide wastewater as a sulfur source. A sulfur-oxidizing bacteria strain DS-7 with strong ability of sulfide removal was isolated from the enrichment culture. The strain DS-7 was Gram-negative and short rod shaped with length of 0.8 ~ 2 μm and width of 0.6 ~ 0.8 μm. The optimal growth temperature and pH was 30oC and 7.0, respectively. The identified strain DS-7 belongs to the genus of Sphingobacterium according to the 16SrDNA bacterial sequences and the morphological and physiological characterization. The sulfide removal performance tests of Sphingobacterium sp. DS-7 showed that the sulfide removal rate was more than 95% and the sulfur conversion rate reached 45.08% after culturing for 4 h at the initial sulfide concentration of 650 mg/L. The sulfur formed by Sphingobacterium sp. DS-7 was in the shape of irregular octahedron.
Key words: sulfur-oxidizing bacteria; biodesulfurization; sulfide; 16SrDNA; identification
[1] 孙秋君, 陈晓晔, 朱建良, 等. 沼气脱硫技术的研究进展[J]. 现代化工, 2012, 32(6): 30-33. DOI:10.3969/j.issn. 0253-4320.2012.06.007.
[2] 王钢, 王欣, 高德玉, 等. 沼气生物脱硫技术研究[J]. 应用能源技术, 2008(5): 33-35. DOI:10.3969/j.issn. 1009-3230.2008.05.015.
[3] LI L, HAN Y P, YAN X, et al. H2S removal and bacterial structure along a full-scale biofilter bed packed with polyurethane foam in a landfill site[J]. Bioresource technology, 2013, 147: 52-58. DOI: 10.1016/j.biortech. 2013.07.143.
[4] 汪家铭. Shell-Paques生物脱硫技术及其应用[J]. 化肥设计, 2010, 48(2): 39-42. DOI:10.3969/j.issn.1004-8901. 2010.02.011.
[5] 白金莲, 蒲万芬, 赵发海. 微生物法去除H2S的研究进展[J]. 石油与天然气化工, 2008, 37(3): 209-213. DOI:10.3969/j.issn.1007-3426.2008.03.010.
[6] 张卫江, 曲萌, 徐姣. 高效脱硫菌的分离、鉴定及脱硫特性研究[J]. 现代化工, 2014, 34(8): 119-122.
[7] 黄强. 一株硫氧化菌的筛选及其生理生化特性[J]. 实验室研究与探索, 2013, 32(11): 28-32, 36. DOI:10.3969/ j.issn.1006-7167.2013.11.007.
[8] 高超. 高效脱硫菌的分离、鉴定及其特性研究[D]. 合肥: 安徽大学, 2010: 19-35.
[9] LUO J F, TIAN G L, LIN W T. Enrichment, isolation and identification of sulfur-oxidizing bacteria from sulfide removing bioreactor[J]. Journal of environmental sciences, 2013, 25(7): 1393-1399. DOI:10.1016/S1001- 0742(12)60179-X.
[10] KLOK J B M, DE GRAAFF M, VAN DEN BOSCH P L F, et al. A physiologically based kinetic model for bacterial sulfide oxidation[J]. Water research, 2013, 47(2): 483-492. DOI: 10.1016/j.watres.2012.09.021
[11] MA Y L, YANG B L, ZHAO J L. Removal of H2S by Thiobacillus denitrificans immobilized on different matrices[J]. Bioresource technology, 2006, 97(16): 2041-2046. DOI: 10.1016/j.biortech.2005.09.023.
[12] ZHANG J B, ZHANG T, MA K, et al. Isolation and identification of the thermophilic alkaline desulphuricant strain[J]. Science in China series B: chemistry, 2008, 51(2): 158-165. DOI: 10.1007/s11426-008-0008-5.
[13] VAN DEN BOSCH P L F, SOROKIN D Y, BUISMAN C J, et al. The effect of pH on thiosulfate formation in a biotechnological process for the removal of hydrogen sulfide from gas streams[J]. Environmental science & technology, 2008, 42(7): 2637-2642. DOI: 10.1021/ es7024438.
[14] MESA M M, MACIAS M, CANTERO D. Biological iron oxidation by Acidithiobacillus ferrooxidans in a packed-bed bioreactor[J]. Chemical and biochemical engineering quarterly, 2002, 16(2): 69-73.
[15] SUBLETTE K L, SYLVESTER N D. Oxidation of hydrogen sulfide by thiobacillus denitrificans: desulfurization of natural gas[J]. Biotechnology and bioengineering, 1987, 29(2): 249-257. DOI: 10.1002/bit.260290216.
[16] SOUTHERLAND W M, TOGHROL F. Sulfite oxidase activity in Thiobacillus novellus[J]. Journal of bacteriology, 1983, 156(2): 941-944.
[17] BOSCH J, LEE K Y, JORDAN G, et al. Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans[J]. Environmental science & technology, 2012, 46(4): 2095-2101. DOI: 10.1021/es2022329.
[18] 关秀存, 彭红艳. 亚甲基蓝分光光度法测定水中硫化物[J]. 安阳工学院学报, 2012, 11(4): 25-27. DOI:10.3969/j.issn.1673-2928.2012.04.009.
[19] 赵由之, 梁小兵, 安宁, 等. 液相色谱法测定湖泊沉积物中单质硫[J]. 矿物学报, 2006, 26(1): 29-32. DOI:10.3321/j.issn:1000-4734.2006.01.005.
[20] 闫旭, 马忠良, 严群, 等. 一株硫化物氧化细菌的分离、鉴定和脱硫效果初步验证[J]. 食品与生物技术学报, 2008, 27(5): 113-116. DOI:10.3321/j.issn:1673-1689. 2008.05.021.
[21] 王庭, 阮文权, 严群, 等. ORP控制在硫化物生物氧化成单质硫过程中的应用[J]. 环境工程学报, 2008, 2(3): 366-369.
/
〈 |
|
〉 |