二价铁离子对糖蜜酒精废水厌氧发酵的影响
收稿日期: 2016-04-22
修回日期: 2016-06-30
网络出版日期: 2016-12-28
基金资助
国家科技支撑计划项目(2014BAD02B04);
广东省科技计划项目(2015B020215011)
Effect of Fe2+ on Anaerobic Digestion of Molasses Alcohol Wastewater
Received date: 2016-04-22
Revised date: 2016-06-30
Online published: 2016-12-28
张 佳 , 孙永明 , 李金平 , 孔晓英 , 任守军 , 陈晓洁 . 二价铁离子对糖蜜酒精废水厌氧发酵的影响[J]. 新能源进展, 2016 , 4(6) : 431 -435 . DOI: 10.3969/j.issn.2095-560X.2016.06.002
In order to improve the anaerobic digestion efficiency and realize the recycle of molasses alcohol wastewater, the effects of Fe2+ on the digestion process were investigated. The results showed that with the addition of Fe2+, the SO42− removal rate increased from 77.12% to 90.79%, the COD removal rate increased from 57.34% to 81.14%, the accumulative biogas yield increased from 386 mL•g−1VS to 475 mL•g−1VS, and the biogas production period was shortened from 29 d to 26 d, respectively; in addition, the oxidation-reduction potential (ORP) rose and the pH value decreased.
Key words: Fe2+; SO42− removal rate; COD removal rate; biogas production
[1] 黄贞岚, 张忠民, 陆长清, 等. 糖蜜酒精废水厌氧反应实验研究[J]. 工业水处理, 2008, 28(11): 44-45. DOI: 10.11894/1005-829x.2008.28(11).44.
[2] 张磊, 宁毅, 胡恒. 糖蜜酵母废水处理技术研究进展[J]. 大众科技, 2014(9): 93-96. DOI: 10.3969/j.issn. 1008-1151.2014.09.038.
[3] 任守军, 孙永明, 孔晓英, 等. 物化法去除糖蜜酒精废水硫酸盐效果及其产气性能的比较[J]. 农业工程学报, 2016, 32(5): 251-256. DOI: 10.11975/j.issn.1002-6819. 2016.05.036.
[4] 李永会. 二级厌氧-好氧与物化结合工艺处理糖蜜酵母废水的研究[D]. 广州: 华南理工大学, 2014.
[5] 顾蕴璇, 符征鸽, 黄志龙, 等. 高硫废水厌氧消化中硫酸盐抑制解除方法的研究[J]. 中国沼气, 1996, 14(4): 11-16.
[6] 任济伟. 单相与两相厌氧工艺发酵特性及微生物生态机理比较研究[D]. 北京: 中国农业大学, 2015.
[7] 陈志剑. 添加金属离子对有机垃圾两相厌氧消化促进效果的试验研究[D]. 重庆: 重庆大学. 2007.
[8] 刘燕. 硫酸根对有机废水厌氧生物处理的影响[J]. 环境科学, 1992, 13(5): 50-52, 24.
[9] 任海伟, 姚兴泉, 李金平,等. 玉米秸秆储存方式对其与牛粪混合厌氧消化特性的影响[J]. 农业工程学报, 2014, 30(18):213-222.
[10] Rao P V, Baral S S, Dey R, et al. Biogas generation potential by anaerobic digestion for sustainable energy development in India[J]. Renewable and Sustainable Energy Reviews, 2010, 14(7): 2086-2094. DOI: 10.1016/ j.rser.2010.03.031.
[11] 杨霞. 糖蜜酒精废液的厌氧生物处理及反应器中微生物群落结构分析[D]. 南宁: 广西大学. 2012. DOI: 10.7666/d.y2160923.
[12] 樊丽, 徐龙君, 王辉. 微量元素对牛粪低温厌氧发酵的影响[J]. 环境工程学报, 2012, 6(8): 2809-2812.
[13] 刘翱飞. 厌氧生物技术在工业废水处理中的应用[J]. 资源节约与环保, 2015(2): 52, 54. DOI: 10.3969/ j.issn.1673-2251.2015.02.046.
[14] 李建政, 任南琪. 产酸相最佳发酵类型工程控制对策[J]. 中国环境科学, 1998, 18(5): 398-402. DOI: 10.3321/j.issn:1000-6923.1998.05.005.
[15] 汤桂兰, 汤亲青, 黄健, 等. 不同底物种类对厌氧发酵产氢的影响[J]. 环境科学, 2008, 29(8): 2345-2349. DOI: 10.3321/j.issn:0250-3301.2008.08.045.
[16] MACARIE H, GUYOT J P. Use of ferrous sulphate to reduce the redox potential and allow the start-up of UASB reactors treating slowly biodegradable compounds: application to a wastewater containing 4-methylbenzoic acid[J]. Environmental Technology, 1995, 16(12): 1185-1192. DOI: 10.1080/09593331608616354.
[17] 李永峰, 王艺璇, 程国玲, 等. 二价铁离子对UASB反应器厌氧发酵产氢效能的影响[J]. 环境科学, 2013, 34(6): 2290-2294.
[18] 时昌波, 王进, 彭书传,等. 三价铁离子促进玉米秸秆厌氧发酵[J]. 农业工程技术:新能源产业, 2013, 29(7):218-225.
[19] 吴树彪, 郎乾乾, 张万钦, 等. 微量元素对餐厨垃圾厌氧发酵的影响实验[J]. 农业机械学报, 2013, 44(11): 128-132. DOI: 10.6041/j.issn.1000-1298.2013.11.023.
[20] TRAVERSI D, ROMANAZZI V, DEGAN R, et al. Microbial-chemical indicator for anaerobic digester performance assessment in full-scale wastewater treatment plants for biogas production[J]. Bioresource Technology, 2015, 186: 179-191. DOI: 10.1016/j.biortech.2015.03.042.
[21] CHEN T H, WANG J, ZHOU Y F, et al. Synthetic effect between iron oxide and sulfate mineral on the anaerobic transformation of organic substance[J]. Bioresource Technology, 2014, 151: 1-5. DOI: 10.1016/j.biortech. 2013.10.014.
[22] 张万钦, 吴树彪, 郎乾乾, 等. 微量元素对沼气厌氧发酵的影响[J]. 农业工程学报, 2013, 29(10): 1-11. DOI: 10.3969/j.issn.1002-6819.2013.10.001.
[23] XIE J L, XU L J, WU J, et al. Effect of trace metals on anaerobic digestion of solid waste from farming trade market[J]. Journal of Chongqing University (Natural Science Edition), 2007, 30(5): 23-26. DOI: 10.3969/ j.issn.1000-582X.2007.05.006.
[24] 郭鑫. 基于硫酸根自由基的高级氧化法深度处理造纸废水的研究[D]. 广州: 华南理工大学. 2013.
[25] LIANG X L, ZHONG Y H, ZHU S Y, et al. The decolorization of Acid Orange II in non-homogeneous Fenton reaction catalyzed by natural vanadium–titanium magnetite[J]. Journal of Hazardous Materials, 2010, 181(1/3): 112-120. DOI: 10.1016/j.jhazmat.2010.04.101.
/
〈 |
|
〉 |