欢迎访问《新能源进展》官方网站!今天是
论文

静电纺丝法制备硅碳纳米纤维及其在锂钠离子电池中的应用

  • 李丽叶 ,
  • 刘鹏程 ,
  • 朱孔军
展开
  • 1. 南京航空航天大学,机械结构力学及控制国家重点实验室,南京 210016;
    2. 南京航空航天大学,材料科学与技术学院,南京 210016
李丽叶(1991-),女,硕士研究生,主要研究硅基和碳基材料的制备及在锂钠离子电池中的应用。

收稿日期: 2016-10-15

  修回日期: 2016-11-20

  网络出版日期: 2016-12-28

基金资助

国家自然科学基金(51672130,51372114);
机械结构力学及控制国家重点实验室自主课题(0514Y01);
江苏高校优势学科建设工程资助项目(PAPD);
南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20150610);
江苏省研究生培养创新工程(KYLX_0262);
中央高校基本科研业务费专项资金资助

Electrospun Silicon and Carbon Nanofibers for Advanced Lithium-Ion and Sodium-Ion Batteries

  • LI Li-ye ,
  • LIU Peng-cheng ,
  • ZHU Kong-jun
Expand
  • 1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2016-10-15

  Revised date: 2016-11-20

  Online published: 2016-12-28

摘要

静电纺丝法由于具有工艺简单、功能多样等优点,是一种重要的制备一维锂钠离子电池纳米结构电极材料的方法。目前,已有大量利用静电纺丝技术制备高性能电极材料的研究报道,但具有系统性和针对性的综述论文尚十分有限。碳材料是最早被研究且已实现商业化的锂离子电池负极材料,硅材料则是理论容量最高的负极材料,因此,两者一直是学术界和工业界关注的重点;但碳材料理论容量低和硅材料体积变化大的问题严重阻碍了各自更广泛的实际应用。静电纺丝技术被证明是一种可以解决上述问题的十分有效的方法。因此,本文系统地综述了静电纺丝法制备的硅基和碳基纳米纤维在锂钠离子电池负极材料上的应用和发展,重点从静电纺丝原理、硅碳材料的设计及合成、结构的调控与优化、复合材料的制备到电化学性能的提高等方面作了详细介绍和讨论,同时也指出静电纺丝法在大规模生产中的不足及未来可能的发展方向。希望此综述可以为先进储能材料(尤其是硅基和碳基纳米电极材料)的设计和制备提供一些有益的指导和帮助。

本文引用格式

李丽叶 , 刘鹏程 , 朱孔军 . 静电纺丝法制备硅碳纳米纤维及其在锂钠离子电池中的应用[J]. 新能源进展, 2016 , 4(6) : 443 -454 . DOI: 10.3969/j.issn.2095-560X.2016.06.004

Abstract

Electrospinning technology has been an important method in the preparation of 1D nanostructured electrode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) due to its advantages of the simplicity and versatility. A mass of research articles have reported that the electrochemical performance of electrospun electrode materials can be improved, but systematic and targeted corresponding reviews are still very limited. Carbon, the most mature commercialized anode materials, and silicon, the anode materials with the highest theoretical capacity, have attracted huge interests from the academia and industry. However, the low theoretical capacity of carbon and large volume change of silicon have extremely hindered their further broad application and development. Excitingly, the electrospinning technology is proved to be a very effective method to address the above issues. In this review, we systematically summarize the application and development of electrospun anode nanomaterials for LIBs and SIBs, especially the silicon- and carbon-based nanofibers. More importantly, a detailed introduction and proper discussion of nanomaterials from the principle of electrospinning, design and synthesis of silicon and carbon nanomaterials, modulation and optimization of microstructure, and preparation of nano-composite to the improvement of electrochemical property is given. Finally, the challenges of electrospinning technology in mass production and the possible development tendency are also pointed out. This review would be helpful in the design and preparation for advanced energy-storage materials, especially for the silicon- and carbon-based nanostructured electrode materials.

参考文献

[1] JUNG J W, LEE C L, YU S, et al. Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review[J]. Journal of materials chemistry A, 2016, 4(3): 703-750. DOI: 10.1039/C5TA06844D.

[2] WINTER M, BRODD J B. What are batteries, fuel cells, and supercapacitors?[J]. Chemical reviews, 2004, 104(10): 4245-4270. DOI: 10.1021/cr020730k.

[3] 李伟善. 储能锂离子电池关键材料研究进展[J]. 新能源进展, 2013, 1(1): 95-105. DOI:10.3969/j.issn.2095- 560X.2013.01.009.

[4] BERTHELOT R, CARLIER D, DELMAS C. Electrochemical investigation of the P2-NaxCoO2 phase diagram[J]. Nature materials, 2011, 10(1): 74-80. DOI:10.1038/nmat2920.

[5] GOODENOUGH J B, PARK K S. The li-ion rechargeable battery: A perspective[J]. Journal of the american chemical society, 2013, 135(4): 1167-1176. DOI: 10.1021/ja3091438.

[6] 杜江, 张正富, 彭金辉, 等. 动力锂离子电池正极材料磷酸铁锂的研究进展[J]. 新能源进展, 2013, 1(3): 263-268. DOI:10.3969/j.issn.2095-560X.2013.03.010.

[7] YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical reviews, 2014, 114(23): 11636-11682. DOI: 10.1021/ cr500192f.

[8] WANG L, LU Y H, LIU J, et al. A superior low-cost cathode for a Na-Ion battery[J]. Angewandte chemie, 2013, 52(7): 1964-1967. DOI: 10.1002/anie.201206854.

[9] PAN H L, HU Y S, CHEN L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & environmental science, 2013, 6(8): 2338-2360. DOI: 10.1039/C3EE40847G.

[10] ZHANG Q F, UCHAKER E, CANDELARIA S L, et al. Nanomaterials for energy conversion and storage[J]. Chemical society reviews, 2013, 42(7): 3127-3171. DOI: 10.1039/C3CS00009E.

[11] LI L Y, LIU P C, ZHU K J, et al. A general and simple method to synthesize well-crystallized nanostructured vanadium oxides for high performance Li-ion batteries[J]. Journal of materials chemistry A, 2015, 3(18): 9385-9389. DOI: 10.1039/C5TA00594A.

[12] LIU P C, ZHU K J, GAO Y F, et al. Ultra-long VO2 (A) nanorods using the hight-emperature mixing method under hydrothermal conditions: synthesis, evolution and thermochromic properties[J]. CrystEngComm, 2013, 15(14): 2753-2760. DOI: 10.1039/C3CE27085H.

[13] LIU P C, ZHOU D H, ZHU K J, et al. Bundle-like α’-NaV2O5 mesocrystals: from synthesis, growth mechanism to analysis of Na-ion intercalation/deintercalation abilities[J]. Nanoscale, 2016, 8(4): 1975-1985. DOI: 10.1039/ C5NR05179G.

[14] CHE G, LAKSHMI B B, MARTIN C R, et al. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method[J]. Chemistry of materials, 1998, 10(1): 260-267. DOI: 10.1021/cm970412f.

[15] FAN Z J, YAN J, WEI T, et al. Nanographene- constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: High-performance anode materials for lithium ion batteries[J]. ACS nano, 2011, 5(4): 2787-2794. DOI: 10.1021/nn200195k.

[16] SUPOTHINA S, RATTANAKAM R, TAWKAEW S. Hydrothermal synthesis and photocatalytic activity of anatase TiO2 nanofiber[J]. Journal of nanoscience and nanotechnology, 2012, 12(6): 4998-5003. DOI: 10.1166/jnn.2012.4939.

[17] POLSHETTIWAR V, BARUWATI B, VARMA R S. Self-assembly of metal oxides into three-dimensional nanostructures: Synthesis and application in catalysis[J]. ACS nano, 2009, 3(3): 728-736. DOI: 10.1021/nn800903p.

[18] THAVASI V, SINGH G, RAMAKRISHNA S. Electrospun nanofibers in energy and environmental applications[J]. Energy & environmental science, 2008, 1(2): 205-221. DOI: 10.1039/B809074M.

[19] JI L W, LIN Z, ALCOUTLABI M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy & environmental science, 2011, 4(8): 2682-2699. DOI: 10.1039/C0EE00699H.

[20] ZHANG X W, JI L W, TOPRAKCI O, et al. Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries[J]. Polymer reviews, 2011, 51: 239-264. DOI: 10.1080/15583724.2011.593390.

[21] WANG H G, YUAN S, MA D L, et al. Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance[J]. Energy & environmental science, 2015, 8(6): 1660-1681. DOI: 10.1039/C4EE03912B.

[22] KUMAR P S, SUNDARAMURTHY J, SUNDARRAJAN S, et al. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation[J]. Energy & environmental science, 2014, 7(10): 3192-3222. DOI: 10.1039/C4EE00612G.

[23] YARIN A L, KOOMBHONGSE S, RENEKER D H. Bending instability in electrospinning of nanofibers[J]. Journal of applied physics, 2001, 89(5): 3018-3026. DOI: 10.1063/1.1333035.

[24] Formhals A. Process and apparatus for spinning[P]. US Patent: US P1975504, 1934.

[25] DOSHI J, RENEKER D H. Electrospinning process and applications of electrospun fibers[J]. Journal of electrostatics, 1995, 35(3/4): 151-160. DOI:10.1016/ 0304-3886(95)00041-8.

[26] HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites science and technology, 2003, 63(5): 2223-2253. DOI: 10.1016/ S0266-3538(03)00178-7.

[27] XIE J W, LI X R, XIA Y N. Putting electrospun nanofibers to work for biomedical research[J]. Macro- molecular rapid communications, 2008, 29(22): 1775-1792. DOI: 10.1002/marc.200800381.

[28] WANG H G, LIU Q W, YANG Q B, et al. Electrospun poly (methyl methacrylate) nanofibers and microparticles[J]. Journal of materials science, 2010, 45: 1032-1038. DOI: 10.1007/s10853-009-4035-1.

[29] SUN Z C, ZUSSMAN E, YARIN A L, et al. Compound core-shell polymer nanofibers by co-electrospinning[J]. Advanced materials, 2003, 15(22): 1929-1932. DOI: 10.1002/adma.200305136.

[30] DAI H Q, GONG J, KIM H, et al. A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique[J]. Nanotechnology, 2002, 13(5): 674-677. DOI: 10.1088/0957-4484/13/5/327.

[31] CHEN H Y, WANG N, DI J C, et al. Nanowire- in-microtube structured core/shell fibers via multifluidic coaxial electrospinning[J]. Langmuir, 2010, 26(13): 11291-11296. DOI: 10.1021/la100611f.

[32] 程昕予, 于明浩, 卢锡洪. 非对称超级电容器负极材料研究进展[J]. 新能源进展, 2016, 4(4): 286-296. DOI:10.3969/j.issn.2095-560X.2016.04.005.

[33] CHEN T Q, LIU Y, PAN L K, et al. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance[J]. Journal of materials chemistry A, 2014, 2(12): 4117-4121. DOI: 10.1039/ C3TA14806H.

[34] BONSO J S, KALAW G D, FERRARIS J P. High surface area carbon nanofibers derived from electrospun PIM-1 for energy storage applications[J]. Journal of materials chemistry. A, 2014, 2(2): 418-424. DOI: 10.1039/C3TA13779A.

[35] KIM C, YANG K S, KOJIMA M, et al. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries[J]. Advanced functional materials, 2006, 16(18): 2393-2397. DOI: 10.1002/adfm.200500911.

[36] WU Y Z, REDDY M V, CHOWDARI B V R, et al. Long-term cycling studies on electrospun carbon nanofibers as anode material for lithium ion batteries[J]. ACS applied materials & interfaces, 2013, 5(22): 12175-12184. DOI: 10.1021/am404216j.

[37] JI L W, YAO Y F, TOPRAKCI O, et al. Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high- performance rechargeable lithium-ion batteries[J]. Journal of power sources, 2010, 195(7): 2050-2056. DOI:10.1016/ j.jpowsour.2009.10.021.

[38] NAN D, HUANG Z H, LV R T, et al. Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance freestanding electrode materials[J]. Journal of materials chemistry A, 2014, 2(46): 19678-19684. DOI: 10.1039/C4TA03868A.

[39] Ji L W, Lin Z, Medford A J, et al. Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material[J]. Carbon, 2009, 47(14): 3346-3354. DOI: 10.1016/j.carbon.2009. 08.002.

[40] LEE B S, SON S B, PARK K M, et al. Effect of pores in hollow carbon nanofibers on their negative electrode properties for a lithium rechargeable battery[J]. ACS applied materials & interfaces, 2012, 4(12): 6702-6710. DOI: 10.1021/am301873d.

[41] INAGAKI M, YANG Y, KANG F Y. Carbon nanofibers prepared via electrospinning[J]. Advanced materials, 2012, 24(19): 2547-2566. DOI: 10.1002/adma.201104940.

[42] ZHANG L F, ABOAGYE A, KELKAR A, et al. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications[J]. Journal of materials science, 2014, 49(2): 463-480. DOI: 10.1007/s10853-013-7705-y.

[43] BULUSHEVA L G, OKOTRUB A V, KURENYA A G, et al. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries[J]. Carbon, 2011, 49(12): 4013-4023. DOI: 10.1016/j.carbon.2011.05.043.

[44] ZHANG B, XU Z L, HE Y B, et al. Exceptional rate performance of functionalized carbon nanofiber anodes containing nanopores created by (Fe) sacrificial catalyst[J]. Nano energy, 2014, 4: 88-96. DOI: 10.1016/j.nanoen.2013. 12.011.

[45] WANG P Q, ZHANG D, MA F Y, et al. Mesoporous carbon nanofibers with a high surface area electrospun from thermoplastic polyvinylpyrrolidone[J]. Nanoscale, 2012, 4(22): 7199-7204. DOI: 10.1039/c2nr32249h.

[46] JI L W, ZHANG X W. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries[J]. Nanotechnology, 2009, 20(15): 155705. DOI: 10.1088/0957-4484/20/15/ 155705.

[47] CHEN Y M, LU Z G, ZHOU L M, et al. Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries[J]. Energy & environmental science, 2012, 5(7): 7898-7902. DOI: 10.1039/C2EE22085G.

[48] ZHANG W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of power sources, 2011, 196(1): 13-24. DOI: 10.1016/ j.jpowsour.2010.07.020.

[49] WINTER M, BESENHARD J O, SPAHR M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advanced materials, 1998, 10(10): 725-763. DOI: 10.1002/(SICI)1521-4095(199807)10:10<725::AID- ADMA725>3.0.CO;2-Z.

[50] OBROVAC M N, CHRISTENSEN L, BA LE D, et al. Alloy design for lithium-ion battery anodes[J]. Journal of the electrochemical society, 2007, 154(9): A849-A855. DOI: 10.1149/1.2752985.

[51] WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano today, 2012, 7(4): 414-429. DOI: 10.1016/j.nantod.2012.08.004.

[52] CHOI N S, YAO Y, CUI Y, et al. One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials[J]. Journal of materials chemistry, 2011, 21(27): 9825-9840. DOI: 10.1039/C0JM03842C.

[53] LEE D J, LEE H, RYOU M H, et al. Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries[J]. ACS applied materials & interfaces, 2013, 5(22): 12005-12010. DOI: 10.1021/am403798a.

[54] MCDOWELL M T, LEE S W, HARRIS J T, et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres[J]. Nano letters, 2013, 13(2): 758-764. DOI: 10.1021/nl3044508.

[55] JUNG J W, RYU W H, SHIN J, et al. Glassy metal alloy nanofiber anodes employing graphene wrapping layer: Toward ultralong-cycle-life lithium-ion batteries[J]. ACS nano, 2015, 9(7): 6717-6727. DOI: 10.1021/acsnano. 5b01402.

[56] XU Y H, ZHU Y J, WANG C S. Mesoporous carbon/ silicon composite anodes with enhanced performance for lithium-ion batteries[J]. Journal of materials chemistry A, 2014, 2(25): 9751-9757. DOI: 10.1039/C4TA01691B.

[57] ZHOU X S, WAN L J, GUO Y G. Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries[J]. Small, 2013, 9(16): 2684-2688. DOI: 10.1002/smll.201202071.

[58] LI Y, SUN Y J, XU J G, et al. Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating[J]. Journal of materials chemistry A, 2014, 2(29): 11417-11425. DOI: 10.1039/C4TA01562B.

[59] SHIN J, PARK K, RYU W H, et al. Graphene wrapping as a protective clamping layer anchored to carbon nanofibers encapsulating Si nanoparticles for a Li-ion battery anode[J]. Nanoscale, 2014, 6(21): 12718-12726. DOI: 10.1039/C4NR03173C.

[60] WU H, ZHENG G Y, LIU N, et al. Engineering empty space between Si nanoparticles for lithium-ion battery anodes[J]. Nano letters, 2012, 12(2): 904-909. DOI: 10.1021/nl203967r.

[61] LEE B S, YANG H S, JUNG H, et al. Novel multi- layered 1-D nanostructure exhibiting the theoretical capacity of silicon for a super-enhanced lithium-ion battery[J]. Nanoscale, 2014, 6(11): 5989-5998. DOI: 10.1039/c4nr00318g.

[62] YANG H S, LEE B S, YOU B C, et al. Fabrication of carbon nanofibers with Si nanoparticle-stuffed cylindrical multi-channels via coaxial electrospinning and their anodic performance[J]. RSC advances, 2014, 4(88): 47389-47395. DOI: 10.1039/C4RA10031J.

[63] HWANG T H, LEE Y M, KONG B S, et al. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes[J]. Nano letters, 2012, 12(2): 802-807. DOI: 10.1021/nl203817r.

[64] CHOI J H, LEE C L, PARK K S, et al. Sulfur-impregnated MWCNT microball cathode for Li-S batteries[J]. RSC advances, 2014, 4(31): 16062-16066. DOI: 10.1039/ C4RA01919A.

[65] YIN Y X, XIN S, WAN L J, et al. Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries[J]. The journal of physical chemistry C, 2011, 115(29): 14148-14154. DOI: 10.1021/jp204653y.

[66] XU Y H, ZHU Y J, HAN F D, et al. 3D Si/C fiber paper electrodes fabricated using a combined electrospray/ electrospinning technique for li-ion batteries[J]. Advance energy materials, 2015, 5(1): 1400753. DOI: 10.1002/ aenm.201400753.

[67] DAHBI M, YABUUCHI N, KUBOTA K, et al. Negative electrodes for Na-ion batteries[J]. Physical chemistry chemical physics, 2014, 16(24): 15007-15028. DOI: 10.1039/C4CP00826J.

[68] Li W H, Zeng L C, Yang Z Z, et al. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers[J]. Nanoscale, 2014, 6(2): 693-698. DOI: 10.1039/c3nr05022j.

[69] KIM Y, HA K H, OH S M, et al. High-capacity anode materials for sodium-ion batteries[J]. ChemInform, 2014, 20(38): 11980-11992. DOI: 10.1002/chem.201402511.

[70] Bai Y, Wang Z, Wu C, et al. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for na-ion battery[J]. ACS applied materials & interfaces, 2015, 7(9): 5598-5604. DOI: 10.1021/acsami. 5b00861.

[71] ZHU C B, MU X K, AKEN P A V, et al. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage[J]. Angewandte chemie, 2014, 53(8): 2152-2156. DOI: 10.1002/anie.201308354.

文章导航

/