欢迎访问《新能源进展》官方网站!今天是
论文

正丁烷催化燃烧数值模拟及影响因素分析

  • 于亚薇 ,
  • 钟北京
展开
  • 清华大学航天航空学院,北京 100084
于亚薇(1988-),女,博士研究生,从事微尺度催化燃烧研究。

收稿日期: 2016-12-29

  修回日期: 2017-01-22

  网络出版日期: 2017-02-28

基金资助

国家自然科学基金面上项目(51276096)

Numerical Simulation of Catalytic Combustion of n-Butane and Analysis of Influencing Factors

  • YU Ya-wei ,
  • ZHONG Bei-jing
Expand
  • School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Received date: 2016-12-29

  Revised date: 2017-01-22

  Online published: 2017-02-28

摘要

本文采用详细表面反应机理对微通道中正丁烷的催化燃烧特性进行了数值模拟计算。重点研究了燃烧器壁面厚度、导热系数与对流换热系数对壁面温度分布及热量损失的影响。研究结果表明:适当增加燃烧器壁面厚度有利于热量水平方向传递,减小壁面温差;导热系数会极大地影响壁面热均匀性,对流换热系数是影响热量损失的关键因素。导热系数增大,有利于预热来流混合气,降低反应难度;同时,竖直方向的热量传递增加了反应器的散热量,不利于燃烧稳定。

本文引用格式

于亚薇 , 钟北京 . 正丁烷催化燃烧数值模拟及影响因素分析[J]. 新能源进展, 2017 , 5(1) : 1 -7 . DOI: 10.3969/j.issn.2095-560X.2017.01.001

Abstract

The catalytic combustion characteristics of n-butane/air mixture were investigated numerically by using Fluent with detailed surface reaction mechanism. This work is mainly focused on the effect of combustor wall thickness, thermal conductivity and convection heat transfer coefficient on combustion characteristic and flame stability. The results show that wall thickness will benefit horizontal heat transfer, leading to a more uniform temperature. Thermal conductivity has a significant effect on temperature uniformity and the convection heat transfer coefficient is the dominant factor on the heat loss. Large thermal conductivity is helpful for preheating the mixture and resulting in easier reaction. However, the increasing horizontal heat loss that comes along is against the combustion stability.

参考文献

[1] FERNANDEZ-PELLO A C. Micropower generation using combustion issues and approaches[J]. Proceedings of the combustion institute, 2002, 29(1): 883-899. DOI: 10.1016/S1540-7489(02)80113-4.

[2] RAIMONDEAU S, NORTON D G, VLACHOS D G, et al. Modeling of high-temperature microburners[J]. Proceedings of the combustion institute, 2002, 29(1): 901-907. DOI: 10.1016/S1540-7489(02)80114-6.

[3] DEUT SCHMANN O, SNHMIDT R, BEHRENDT F, et al. Numerical modeling of catalytic combustion[J]. Proc. Combust. Inst., 1996, 26: 1747-1754.

[4] VLACHOS D G, BUI P A. Catalytic ignition and extinction of hydrogen: comparison of simulations and experiments[J]. Surface science, 1996, 364(3): L625-L630.

[5] DEUTSCHMANN O, SCHWIEDEMOCH R, MAIER L I, et al. Natural gas conversion in monolithic catalysts: interaction of chemical reactions and transport phenomena[J]. Studies in surface science and catalysis, 2001, 136: 251-258. DOI: 10.1016/S0167-2991(01)80312-8.

[6] NORTON D G, WETZEL E D, VLACHOS D G. Thermal management in catalytic microreactors[J]. Industrial & engineering chemistry research, 2006, 45(1): 76-84. DOI: 10.1021/ie050674o.

[7] FEDERICI J A, WETZEL E D, GEIL B R, et al. Single channel and heat recirculation catalytic microburners: An experimental and computational fluid dynamics study[J]. Proceedings of the combustion institute, 2009, 32(2): 3011-3018. DOI: 10.1016/j.proci.2008.07.005.

[8] ZHONG B J, YANG F, YANG Q T. Catalytic combustion of n-C4H10 and DME in swiss-roll combustor with porous ceramics[J]. Combustion science and technology, 2012, 184(5): 573-584. DOI: 10.1080/00102202.2011. 651231.

[9] SESHADRI V, KAISARE N S. Simulation of hydrogen and hydrogen-assisted propane ignition in pt catalyzed microchannel[J]. Combustion and flame, 2010, 157(11): 2051-2062. DOI: 10.1016/j.combustflame.2010.04.005.

[10] MARUTA K, TAKEDA K, AHN J, et al. Extinction limits of catalytic combustion in microchannels[J]. Proceedings of the combustion institute, 2002, 29(1): 957-963. DOI: 10.1016/S1540-7489(02)80121-3.

[11] MARUTA K, TAKEDA K, DEUTSCHANN O. Catalytic combustion in microchannel for MEMS power generation[C]//The third Asia-Pacafic Conference on Combustion. Seoul, Korea, 2001.

[12] ZHONG B J, JIAO J. Numerical analysis of the catalytic combustion of premixed methane/air mixtures in microtubes[J]. Chemical engineering & technology, 2008, 31(9): 1342-1349. DOI: 10.1002/ceat.200700504.

[13] 钟北京, 焦健. 微通道内甲烷空气预混气的熄火极限[J]. 清华大学学报(自然科学版), 2007, 47(11): 2044-2047. DOI: 10.3321/j.issn:1000-0054.2007.11.028.

[14] 吴晟, 冉景煜, 杨德祥, 等. 微圆管壁面材料和厚度对甲烷催化着火的影响[J]. 工程热物理学报, 2014, 35(9): 1884-1888.

[15] DI BENEDETTO A, DI SARLI V, RUSSO G. Effect of geometry on the thermal behavior of catalytic micro-combustors[J]. Catalysis today, 2010, 155(1/2): 116-122. DOI: 10.1016/j.cattod.2009.01.048.

[16] 熊鹏飞, 钟北京, 杨帆. C1-C4在Pt催化剂上的多相反应机理[J]. 物理化学学报, 2011, 27(9): 2200-2208.

[17] NORTON D G, VLACHOS D G. Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures[J]. Chemical engineering science, 2003, 58(21): 4871-4882. DOI: 10.1016/j.ces.2002.12.005,

[18] ZHONG Beijing, YANG Fan. Characteristics of hydrogen-assisted catalytic ignition of n-butane/air mixtures[J]. International journal of hydrogen energy, 2012, 37(10): 8716-8723. DOI: 10.1016/j.ijhydene.2012. 02.042.

文章导航

/