采用涡轮膨胀机的有机朗肯循环系统优化
收稿日期: 2016-12-08
修回日期: 2017-02-06
网络出版日期: 2017-02-28
基金资助
广东省自然科学基金项目(2016A030313174,2015A030313714);
中国科学院可再生能源重点实验室基金项目(Y607j11001);
广州市科技计划项目(201607010106,2014J2200079);
中国科学院青年创新促进会资助项目(2017402)
Optimization of an Organic Rankine Cycle System with Turbo-Expander
Received date: 2016-12-08
Revised date: 2017-02-06
Online published: 2017-02-28
针对采用涡轮膨胀机的低温亚临界有机朗肯循环(Organic Rankine cycle,ORC)系统,以R245fa为循环工质,基于EES(Engineering Equation Solver)软件建立了数学模型。在给定的冷热源参数条件下,以单位净发电量所需的总传热面积和循环热效率为目标函数,采用共轭方向法对ORC系统进行多目标优化,并在此基础上研究了冷热源参数变化对综合目标函数的影响规律。结果表明:存在最优的换热器夹点温差和涡轮膨胀机转速使ORC系统的综合目标函数最小;当换热器夹点温差和涡轮膨胀机转速恒定为优化值时,ORC系统的综合目标函数随着热水进口温度的升高而降低,随着冷却水温度、热水和冷却水进出口温差的升高而逐渐升高。
刘 茜 , 刘莉娜 , 王令宝 , 卜宪标 , 李华山 . 采用涡轮膨胀机的有机朗肯循环系统优化[J]. 新能源进展, 2017 , 5(1) : 23 -31 . DOI: 10.3969/j.issn.2095-560X.2017.01.004
Using R245fa as working fluid, a mathematic model for subcritical organic Rankine cycle (ORC) system with turbo-expander driven by low-temperature heat source was built based on Engineering Equation Solver software. Under specific working conditions, with total heat transfer area per unit net power output and thermal efficiency as objective functions, the ORC system was multi-objectively optimized by the conjugate directions method. Based on the optimization, the influence of hot and cooling water parameters on the objective functions was also investigated. The result shows that there is an optimum pinch point temperature difference in the heat exchangers and an optimum turbo-expander rotational speed that can minimize the combined objective function of ORC system. Under the optimum pinch point temperature difference and turbine rotational speed, the increase in the hot water inlet temperature will reduce the ORC system’s combined objective function, but the rise in the cooling water temperature and the temperature difference between the inlet and outlet of hot water as well as cooling water will enlarge the combined objective function.
[1] 顾伟, 孙绍芹, 翁一武, 等. 采用涡旋膨胀机的低品位热能有机物朗肯循环发电系统实验研究[J]. 中国电机工程学报, 2011, 31(17): 20-25.
[2] ZHANG J H, ZHANG W F, LI Y, et al. Controller design for a heat exchanger in waste heat utilizing systems[M]//TAN Y, SHI Y H, CHAI Y, et al, eds. Advances in Swarm Intelligence. Berlin Heidelberg: Springer, 2011, 6729: 379-386.
[3] BIANCHI M, DE PASCALE A. Bottoming cycles for electric energy generation: Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources[J]. Applied energy, 2011, 88(5): 1500-1509. DOI: 10.1016/j.apenergy. 2010.11.013.
[4] 李艳. 低温有机朗肯循环及其透平的研究与设计[D]. 北京: 清华大学, 2013.
[5] SAURET E, ROWLANDS A S. Candidate radial-inflow turbines and high-density working fluids for geothermal power systems[J]. Energy, 2011, 36(7): 4460-4467. DOI: 10.1016/j.enery.2011.03.076.
[6] MARCUCCILLI F, ZOUAGHI S. Radial inflow turbines for kalina and organic rankine cycles[C]//Proceedings of 2007 European Geothermal Congress. Unterhaching, Germany, 2007: 1-7.
[7] MARCUCCILLI F. Advantages of using radial inflow turbines for kalina and organic rankine cycles[J]. GRC Transactions, 2008, 32: 413-418.
[8] 王怀信, 王大彪, 张圣君. 低温有机朗肯循环系统参数的理论与实验优化[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(5): 408-413. DOI: 10.11784/ tdxbz201209029.
[9] 王大彪, 段捷, 胡哺松, 等. 有机朗肯循环发电技术发展现状[J]. 节能技术, 2015, 33(3): 235-242. DOI: 10.3969/j.issn.1002-6339.2015.03.010.
[10] QUOILIN S, VAN DEN BROKE M, DECLAYE S, et al. Techno-economic survey of Organic Rankine Cycle (ORC) systems[J]. Renewable and sustainable energy reviews, 2013, 22: 168-186. DOI: 10.1016/j.rser.2013. 01.028.
[11] PAPADOPOULOS A I, STIJEPOVIC M, LINKE P. On the systematic design and selection of optimal working fluids for Organic Rankine Cycles[J]. Applied thermal engineering, 2010, 30(6/7): 760-769. DOI: 10.1016/j. applthermaleng.2009.12.006.
[12] 贺超, 刘朝, 焦有宙, 等. 超临界ORC系统综合性能优化[J]. 工程热物理学报, 2015(10): 2111-2116.
[13] 王志奇, 周乃君, 夏小霞, 等. 有机朗肯循环发电系统的多目标参数优化[J]. 化工学报, 2013, 64(5): 1710-1716. DOI: 10.3969/j.issn.0438-1157.2013.05.028.
[14] GIMELLI A, LUONGO A, MUCCILLO M. Efficiency and cost optimization of a regenerative Organic Rankine Cycle power plant through the multi-objective approach[J]. Applied thermal engineering, 2017, 114: 601-610. DOI: 10.1016/j.applthermaleng.2016.12.009.
[15] BALJE O E. Turbomachines: a guide to design, selection and theory[M]. New York: John Wiley & Sons Inc, 1981.
[16] AUNGIER R H. Turbine aerodynamics: axial-flow and radial-flow turbine design and analysis[M]. New York: ASME Press, 2006.
[17] 樊明强, 周天, 孙志强, 等. 基于总效率最优的中低温余热有机朗肯循环性能[J]. 中南大学学报(自然科学版), 2016, 47(3): 1030-1038. DOI: 10.11817/j.issn.1672-7207. 2016.03.041.
[18] 高雷阜. 最优化理论与方法[M]. 沈阳: 东北大学出版社, 2005.
[19] 马新灵, 孟祥睿, 魏新利, 等. 有机朗肯循环低品位热能发电系统向心透平的设计与性能研究[J]. 中国电机工程学报, 2014, 34(14): 2289-2296. DOI: 10.13334/ j.0258-8013.pcsee.2014.14.010.
[20] AYDIN H, LEE H S, KIM H J, et al. Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating[J]. Renewable energy, 2014, 72: 154-163. DOI: 10.1016/j.renene.2014.07.001.
[21] BAO J J, ZHAO L. A review of working fluid and expander selections for organic Rankine cycle[J]. Renewable and sustainable energy reviews, 2013, 24: 325-342. DOI: 10.1016/j.rser.2013.03.040.
[22] 周舒蒙. 有机朗肯循环系统中蒸发器和冷凝器夹点温差的优化与匹配研究[D]. 重庆: 重庆大学, 2014.
[23] PRESS W H, FLANNERY B P, TEUKOLSKY S A, et al. Numerical recipes in Pascal[M]. Cambridge: Cambridge University Press, 1989.
[24] KLEIN S A. Engineering Equation Solver (EES)[Z]. Academic Professional Version, 2007.
[25] ZHANG S J, WANG H X, TAO G, et al. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation[J]. Applied energy, 2011, 88(8): 2740-2754. DOI: 10.1016/j.apenergy.2011.02.034.
[26] 孙志强, 易思阳, 郭美茹, 等. 利用中低温余热的回热有机朗肯循环性能分析[J]. 热能动力工程, 2015(1): 24-30.
[27] ALÁEZ S L G, BOMBARDA P, INVERNIZZI C M, et al. Evaluation of ORC modules performance adopting commercial plastic heat exchangers[J]. Applied energy, 2015, 154: 882-890. DOI: 10.1016/j.apenergy.2015. 05.080.
[28] LECOMPTE S, LEMMENS S, HUISSEUNE H, et al. Multi-objective Thermo-economic optimization strategy for ORCs applied to subcritical and transcritical cycles for waste heat recovery[J]. Energies, 2015, 8(4): 2714-2741. DOI: 10.3390/en8042714.
/
〈 |
|
〉 |