欢迎访问《新能源进展》官方网站!今天是
论文

高压下南海神狐水合物区域海底沉积地层三轴力学性质初步测试

  • 关进安 ,
  • 卢静生 ,
  • 梁德青 ,
  • 李栋梁 ,
  • 万丽华
展开
  • 1. 中国科学院广州能源研究所,广州510640;
    2. 中国科学院天然气水合物重点实验室,广州 510640; 
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院广州天然气水合物中心,广州 510640
关进安(1980-),工学博士,副研究员,硕士生导师,主要从事水合物基础物性(热物性、热/动力学、力学)及自然界水合物系统研究。

收稿日期: 2016-11-23

  修回日期: 2017-01-03

  网络出版日期: 2017-02-28

基金资助

国家自然科学基金(41374149,51474197,51661165011,51576197);
国家海洋地质专项项目(GHZ2012006003)

Preliminary Tri-Axial Mechanical Test on the Hydrate-Bearing Media from Shenhu Area of South China Sea under High Confining Pressures

  • GUAN Jin-an ,
  • LU Jing-sheng ,
  • LIANG De-qing ,
  • LI Dong-liang ,
  • WAN Li-hua
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Key Laboratory of Gas Hydrate, Chinese Academy of Sciences, Guangzhou 510640, China; 
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;  
    4. Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2016-11-23

  Revised date: 2017-01-03

  Online published: 2017-02-28

摘要

为了解南海神狐海底含甲烷水合物沉积地层的工程地质和力学性质,使用钻取自当地的多孔沉积细砂,在可燃冰三轴原位力学测试平台上开展了当地环境下的含甲烷水合物沉积物试样的生成及随后的初步原位三轴力学测试。设计2℃和5℃两个环境,设计围压为9 MPa ~ 15 MPa,水合物含量为50%,测试结果表明试样轴向应力、轴差应力、弹性模量随围压变化表现基本相同,在12 MPa以前均随围压增大,在12 MPa ~ 14 MPa间达到其峰值后下降;而应力–应变峰值不同,2℃时试样峰值强度展先降低然后再升高,而5℃时则为先升高然后再降低,相较而言在2℃时试样的变化比较平缓而在5℃时变化较大;同时2℃时试样的轴向应力、轴差应力和弹性模量比在5℃时更大,在2℃时和在15 MPa围压时该试样的应力/应变变化也比分别在5℃时和在10 MPa下大些,说明在高围压和低温度时含甲烷水合物沉积物力学强度更大。高压低温环境下含水合物沉积地层更可能展现出弹塑性力学特征。

本文引用格式

关进安 , 卢静生 , 梁德青 , 李栋梁 , 万丽华 . 高压下南海神狐水合物区域海底沉积地层三轴力学性质初步测试[J]. 新能源进展, 2017 , 5(1) : 40 -46 . DOI: 10.3969/j.issn.2095-560X.2017.01.006

Abstract

In order to understand the geological and mechanical characteristics of the methane hydrate-bearing sediments in Shenhu area of South China Sea, a group of preliminary tri-axial mechanical tests were carried out. The temperatures were set as 2oC and 5oC separately, and the scope of the confining pressure was 9 MPa ~ 15 MPa, with hydrate content of 50%. The results indicate that the axial stresses, deviator stresses and elasticity modulus show similar changes according to the confining pressure. They increase with the confining pressures before 12 MPa. In the range of 12 MPa ~ 14 MPa they reach their peaks and then begin to decline. The peak of the stress-strain relationships at the two temperatures are different, it decreases firstly and then increases at 2oC, but increases firstly and then decreases at 5oC. The axial stress, deviator stress and elasticity modulus at 2oC are larger than at 5oC, and the stress/strain changes at 2oC&15 MPa are also larger than at 5oC&10 MPa respectively. It proves that the hydrate-bearing porous media possess a stronger mechanical strength under the surroundings of high pressure and low temperature.

参考文献

[1] YANG S X, MING Z, LIANG J Q, et al. Preliminary results of China’s third gas hydrate drilling expedition: a critical step from discovery to development in the South China Sea[J]. Fire in the ice, 2015, 15(2): 1-5.

[2] WU N Y, ZHANG H Q, YANG S X, et al. Gas hydrate system of Shenhu area, northern South China Sea: geochemical results[J]. Journal of geological research, 2011, 2011: 370298. DOI: 10.1155/2011/370298.

[3] 祝有海, 张永勤, 文怀军, 等. 祁连山冻土区天然气水合物及其基本特征[J]. 地球学报, 2010, 31(1): 7-16.

[4] 张光学, 梁金强, 陆敬安, 等. 南海东北部陆坡天然气水合物藏特征[J]. 天然气工业, 2014, 34(11): 1-10. DOI: 10.3787/j.issn.1000-0976.2014.11.001.

[5] COLLETT T S. The gas hydrate petroleum system[C]// Proceedings of the 8th International Conference on Gas Hydrate(ICGH8), T3-154, Beijing, China, 28 July-1 August. Beijing, China, 2014.

[6] 刘金龙, 王淑红, 顔文. 海洋天然气水合物与深水油气共生关系探讨[J]. 热带海洋学报, 2015, 34(2): 39-51. DOI: 10.11978/j.issn.1009-5470.2015.02.006.

[7] ARCHER D E, BUFFETT B A, MCGUIRE P C. A Two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles[J]. Biogeosciences, 2012, 9: 2859-2878.

[8] ARCHER D E, BUFFETT B A. A Two-dimensional model of the methane cycle in a sedimentary accretionary wedge[J]. Biogeosciences, 2012, 9(8): 3323-3336. DOI: 10.5194/bg-9-3323-2012.

[9] SULTAN N, COCHONAT P, FOUCHER J P, et al. Effect of gas hydrates melting on seafloor slope instability[J]. Marine geology, 2004, 213(1/4): 379-401. DOI: 10.1016/j.margeo.2004.10.015.

[10] 苏正, 吴能友, 张可霓. 南海北部陆坡神狐天然气水合物开发潜力[J]. 海洋地质前沿, 2011, 27(6): 16-23.

[11] DVORKIN J, NUR A, UDEN R, et al. Rock physics of a gas hydrate reservoir[J]. The leading edge, 2003, 22(9): 842-847. DOI: 10.1190/1.1614153.

[12] DAI S, SANTAMARINA J C, WAITE W F, et al. Hydrate morphology: physical properties of sands with patchy hydrate saturation[J]. Journal of geophysical research-solid earth, 2012, 117(B11): B11205.

[13] BEST A I, PRIEST J A, CLAYTON C R, et al. The effect of methane hydrate morphology and water saturation on seismic wave attenuation in sand under shallow sub-seafloor conditions[J]. Earth and planetary science letters, 2013, 368: 78-87. DOI: 10.1016/j.epsl.2013.02.033.

[14] 胡高伟, 李承峰, 业渝光, 等. 沉积物孔隙空间天然气水合物微观分布观测[J]. 地球物理学报, 2014, 57(5): 1675-1682. DOI: 10.6038/cjg20140530.

[15] COLLETT T S. Reservoir controls on the occurrence and production of gas hydrates in marine and arctic permafrost settings[C]//Proceedings of the 8th International Conference on Gas Hydrate(ICGH8), T3-99, Beijing, China, 28 July-1 August. Beijing, China, 2014.

[16] 蒋明镜, 肖俞, 朱方园. 深海能源土微观力学胶结模型及参数研究[J]. 岩土工程学报, 2012, 34(9): 1574-1583.

[17] 颜荣涛, 韦昌富, 傅鑫晖, 等. 水合物赋存模式对含水合物土力学特性的影响[J]. 岩土力学与工程学报, 2013, 32(S2): 4115-4122.

[18] 孙中明, 张剑, 刘昌岭, 等. 沉积物中甲烷水合物饱和度测定及其力学特性研究[J]. 实验力学, 2013, 28(6): 747-754. DOI: 10.7520/1001-4888-12-196.

[19] 蒋明镜, 朱方园. 不同温压环境下深海能源土力学特性离散元分析[J]. 岩土工程学报, 2014, 36(10): 1761-1769. DOI: 10.11779/CJGE201410001.

[20] 杨期君, 赵春风. 含气水合物沉积物弹塑性损伤本构模型探讨[J]. 岩石力学, 2014, 35(4): 991-997.

[21] JUNG J W, SANTAMARINA J C, SOGA K. Stress- strain response of hydrate-bearing sands: numerical study using discrete element method simulations[J]. Journal of geophysical research: solid earth, 2012, 117(B4): B04202. DOI: 10.1029/2011JB009040.

[22] UCHIDA S, SOGA K, YAMAMOTO K. Critical state soil constitutive model for methane hydrate soil[J]. Journal of geophysical research-solid earth, 2012, 117(B3): B03209. DOI: 10.1029/2011JB008661.

[23] MIENERT J, VANNESTE S, BÜNZ K, et al. Ocean warming and gas hydrate stability on the mid-norwegian margin at the storegga slide[J]. Marine and petroleum geology, 2005, 22(1/2): 233-244. DOI: 10.1016/j.marpetgeo. 2004.10.018.

[24] 宁伏龙, 张可霓, 吴能友, 等. 钻井液侵入海洋含水合物地层的一维数值模拟研究[J]. 地球物理学报, 2013, 56(1): 204-218. DOI: 10.6038/cjg20130121.

[25] 关进安, 梁德青, 吴能友, 等. 高压环境下流体非饱和渗流对含水合物沉积物的影响[J]. 岩土力学, 2013, 34(3): 639-644, 652.

[26] HANDWERGER A L, REMPEL A W. Environmental change, hydrate dissociation, and submarine slope failure along continental margins: the role of saturation anomalies in landslide triggering[C]//Proceedings of the 8th International Conference on Gas Hydrate(ICGH8), Beijing, China, 28 July-1 August. Beijing, China, 2014.

[27] LU J S, LI D L, LIANG D Q. Discussion on The Mechanical Behavior of Gas Hydrate Sediments Based on The Drilling Cores from The South China Sea by Tri-axial Compressive Test[C]//Proceedings of the 8th International Conference on Gas Hydrate(ICGH8), T1-106, Beijing, China, 28 July-1 August. Beijing, China, 2014.

[28] 石要红, 张旭辉, 鲁晓兵, 等. 南海水合物黏土沉积物力学特性试验模拟研究[J]. 力学学报, 2015, 47(3): 521-528. DOI: 10.6052/0459-1879-14-424.

文章导航

/