欢迎访问《新能源进展》官方网站!今天是
论文

热电转化系统的发展与应用

  • 林 涛 ,
  • 韩凤琴 ,
  • 王长宏
展开
  • 1. 华南理工大学广州学院,广州 510800;
    2. 广东工业大学,广州 510006
林 涛(1990-),男,硕士,助教,主要从事新能源开发与利用研究。

收稿日期: 2016-09-28

  修回日期: 2016-11-27

  网络出版日期: 2017-02-28

基金资助

国家自然科学基金(51306040);
广东省科技计划项目(2014A010106027)

Development and Application of Thermoelectric Power System

  • LIN Tao ,
  • HAN Feng-qin ,
  • WANG Chang-hong
Expand
  • 1. Guangzhou College of South China University of Technology, Guangzhou 510800, China;
    2. Guangdong University of Technology, Guangzhou 510006, China

Received date: 2016-09-28

  Revised date: 2016-11-27

  Online published: 2017-02-28

摘要

热电转化技术是一种直接将热能转化为电能的有效方法,具有系统设备使用寿命长、无噪音、绿色环保等优点,多应用于航天、航空及民用工业等领域的余热回收。本文介绍了热电转化技术及系统在不同应用领域中的研究进展,主要描述了国内外热电转化系统性能的研究现状,对热电转化系统的转换效率、复合发电系统的可靠性进行分析,并提出存在问题的解决思路;同时指出随着高性能热电材料、焊料及先进焊接工艺的研究开发,热电转化系统的可靠性将得到提高,应用将得到推广。

本文引用格式

林 涛 , 韩凤琴 , 王长宏 . 热电转化系统的发展与应用[J]. 新能源进展, 2017 , 5(1) : 56 -60 . DOI: 10.3969/j.issn.2095-560X.2017.01.008

Abstract

Thermoelectric effects enable efficient and direct conversion from thermal and electrical energy, which has the advantages of long service life, no noise and environment-friendly and etc. It has been applied in the fields of aerospace, aviation, civil industries and other areas for waste heat recovery. This article introduces the research progresses of the thermoelectric conversion technology in different application areas. Based on the latest development in domestic and abroad study, the conversion efficiency and reliability of the combined system were analyzed. The solutions for existing problems were proposed. Besides, it was pointed out that with the development of high-performance thermoelectric materials, solder and advanced welding technology, the reliability of thermoelectric conversion system would be improved, and the application would be more widely distributed.

参考文献

[1] WOOD C. High temperature thermoelectric energy conversion-II. Materials survey[J]. Energy conversion and management, 1984, 24(4): 331-343. DOI: 10.1016/ 0196-8904(84)90013-X.

[2] ZHANG X, ZHAO L-D. Thermoelectric materials: Energy conversion between heat and electricity[J]. Journal of materiomics, 2015, 1(2): 92-105. DOI: 10.1016/j.jmat. 2015.01.001.

[3] HI-Z. Application[R]. http://hi-z.com/products/.

[4] LEVNER E, LINKOV I, PROTH J-M. Strategic management of marine ecosystems[M]. Netherlands: Springer, 2005. DOI: 10.1007/1-4020-3198-X.

[5] CABALLERO-CALERO O, MARTÍN-GONZÁLEZ M. Thermoelectric nanowires: A brief prospective[J]. Scripta materialia, 2016, 111: 54-57. DOI: 10.1016/j.scriptamat. 2015.04.020.

[6] 王婵, 周泽广, 区煜广, 等. 温差发电器的研究进展[J]. 电测与仪表, 2010, 47(4): 40-44. DOI: 10.3969/j.issn. 1001-1390.2010.04.010.

[7] XIAO C, LI Z, LI K, et al. Decoupling interrelated parameters for designing high performance thermoelectric materials[J]. Accounts of chemical research, 2014, 47(4): 1287-1295. DOI: 10.1021/ar400290f.

[8] ALI H, SAHIN A Z, YILBAS B S. Thermodynamic analysis of a thermoelectric power generator in relation to geometric configuration device pins[J]. Energy conversion and management, 2014, 78: 634-640. DOI: 10.1016/j.enconman.2013.11.029.

[9] 王长宏, 林涛, 曾志环. 半导体温差发电过程的模型分析与数值仿真[J]. 物理学报, 2014, 63(19): 197201. DOI: 10.7498/aps.63.197201.

[10] ISMAIL A K, ABDULLAH M Z, ZUBAIR M, et al. Application of porous medium burner with micro cogeneration system[J]. Energy, 2013, 50: 131-142. DOI: 10.1016/j.energy.2012.12.007.

[11] FISAC M, VILLASEVIL F X, LÓPEZ A M. High- efficiency photovoltaic technology including thermoelectric generation[J]. Journal of power sources, 2014, 252: 264-269. DOI: 10.1016/j.jpowsour.2013.11.121.

[12] CHEN W-H, WANG C-C, HUNG C-I, et al. Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator[J]. Energy, 2014, 64: 287-297. DOI: 10.1016/j.energy.2013.10.073.

[13] JANG J Y, TSAI Y C. Optimization of thermoelectric generator module spacing and spreader thickness used in a waste heat recovery system[J]. Applied thermal engineering, 2013, 51(1/2): 677-689. DOI: 10.1016/j. applthermaleng.2012.10.024.

[14] ZHOU M F, HE Y L, CHEN Y M. A heat transfer numerical model for thermoelectric generator with cylindrical shell and straight fins under steady-state conditions[J]. Applied thermal engineering, 2014, 68(1/2): 80-91. DOI: 10.1016/j.applthermaleng.2014.04.018.

[15] O'SHAUGHNESSY S M, DEASY M J, DOYLE J V, et al. Adaptive design of a prototype electricity-producing biomass cooking stove[J]. Energy for sustainable development, 2015, 28: 41-51. DOI: 10.1016/j.esd.2015.06.005.

[16] 赵建云, 朱冬生, 周泽广, 等. 温差发电技术的研究进展及现状[J]. 电源技术, 2010, 34(3): 310-313. DOI: 10.3969/j.issn.1002-087X.2010.03.027.

[17] SYNKIEWICZ B, SKWAREK A, WITEK K. Vapour phase soldering used for quality improvement of semiconductor thermogenerators (TEGs) assembly[J]. Materials science in semiconductor processing, 2015, 38: 346-351. DOI: 10.1016/j.mssp.2014.12.004.

[18] ZHANG X D, CHAO K T. An automotive thermoelectric– photovoltaic hybrid energy system using maximum power point tracking[J]. Energy conversion and management, 2011, 52(1): 641-647. DOI: 10.1016/j.enconman.2010.07.041.

[19] 李漾, 郑少华, 李伟光. 太阳能温差发电技术的研究现状[J]. 机电工程技术, 2015, 44(2): 74-79. DOI: 10.3969/j.issn.1009-9492.2015.02.022.

[20] BJØRK R, NIELSEN K K. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system[J]. Solar energy, 2015, 120: 187-194. DOI: 10.1016/j.solener.2015.07.035.

[21] MAKKI A, OMER S, SU Y H, et al. Numerical investigation of heat pipe-based photovoltaic– thermoelectric generator (HP-PV/TEG) hybrid system[J]. Energy conversion and management, 2016, 112: 274-287. DOI: 10.1016/j.enconman.2015.12.069.

[22] HASHIM H, BOMPHREY J J, MIN G. Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system[J]. Renewable energy, 2016, 87: 458-463. DOI: 10.1016/j.renene.2015.10.029.

[23] O’SHAUGHNESSY S M, DEASY M J, DOYLE J V, et al. Performance analysis of a prototype small scale electricity-producing biomass cooking stove[J]. Applied energy, 2015, 156: 566-576. DOI: 10.1016/j.apenergy. 2015.07.064.

[24] WANG L, CAI W J, ZHAO H X, et al. Experimentation and cycle performance prediction of hybrid A/C system using automobile exhaust waste heat[J]. Applied thermal engineering, 2016, 94: 314-323. DOI: 10.1016/j. applthermaleng.2015.10.051.

[25] 白洁玮. 液化天然气(LNG)汽车冷能和尾气余热的温差发电系统研究[D]. 太原: 太原理工大学, 2015.

[26] FRANCIOSO L, DE PASCALI C, FARELLA I, et al. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors[J]. Journal of power sources, 2011, 196(6): 3239-3243. DOI: 10.1016/j. jpowsour.2010.11.081.

[27] YU X, XU D H, LIU Y X, et al. Significant performance improvement for micro-thermoelectric energy generator based on system analysis[J]. International journal of electrical power & energy systems, 2015, 67: 417-422. DOI: 10.1016/j.ijepes.2014.12.039.

[28] ALIM D, AY S U, KARIM M N, et al. Alternative power sources for remote sensors: A review[J]. Journal of power sources, 2014, 245: 129-143. DOI: 10.1016/j.jpowsour. 2013.06.081.

文章导航

/