欢迎访问《新能源进展》官方网站!今天是
论文

太阳能跨季节储热技术研究进展

  • 赵 璇 ,
  • 赵彦杰 ,
  • 王景刚 ,
  • 鲍玲玲
展开
  • 1. 河北工程大学,河北 邯郸,056038;
    2. 天津大学中低温热能高效利用教育部重点实验室,天津 300072
赵 璇(1993-),女,硕士研究生,主要从事新能源技术的应用与研究。

收稿日期: 2016-11-07

  修回日期: 2017-02-03

  网络出版日期: 2017-02-28

基金资助

国家自然科学基金(51408182);
河北省自然科学基金(E2015402139);
河北省教育厅科学技术处资助项目(QN2014064)

Research Progress on Solar Seasonal Thermal Energy Storage

  • ZHAO Xuan ,
  • ZHAO Yan-jie ,
  • WANG Jing-gang ,
  • BAO Ling-ling
Expand
  • 1. Hebei University of Engineering, Handan 056038, China;
    2. Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Minisrty of Education), Tianjin University, Tianjin 300072, China

Received date: 2016-11-07

  Revised date: 2017-02-03

  Online published: 2017-02-28

摘要

跨季节储热技术可以有效解决太阳热能在时间、空间上的供需不匹配,是提高太阳能利用率、建筑节能效益的关键技术,在近些年受到了社会的广泛重视。太阳能跨季节储热技术主要包括显热储热、潜热储热和热化学储热三种技术,其中显热储热技术已经实现大规模应用,潜热储热技术和热化学储热技术尚处于实验室研究阶段。文章总结了该领域国内外的研究现状,综合分析了三种储热技术的优缺点和注意事项,并指出了跨季节储热技术的研究方向和未来的发展趋势。

本文引用格式

赵 璇 , 赵彦杰 , 王景刚 , 鲍玲玲 . 太阳能跨季节储热技术研究进展[J]. 新能源进展, 2017 , 5(1) : 73 -80 . DOI: 10.3969/j.issn.2095-560X.2017.01.011

Abstract

As an important technology for improving solar utilization rate and building energy conservation, seasonal thermal energy storage can solve the time-discrepancy and space-discrepancy problems of solar energy utilization. It has drawn widely attention in recent years. There are three available technologies for seasonal heat storage: sensible heat storage, latent heat storage and chemical heat storage. Sensible heat storage is a comparatively mature technology which has been implemented in a lot of large-scale demonstration plants. While latent heat and chemical heat storages are still in the stage of lab-scale experiments. This paper summarizes the current research status of these three technologies at home and abroad, analyzes their advantages and disadvantages comprehensively and indicates the research trends of seasonal heat storage technology.

参考文献

[1] 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2016[M]. 北京: 中国建筑工业出版社, 2016.

[2] DINCER I, DOST S. A perspective on thermal energy storage systems for solar energy applications[J]. International journal of energy research, 1996, 20(6): 547-557. DOI: 10.1002/(SICI)1099-114X(199606)20:6< 547::AID-ER173>3.0.CO;2-S.

[3] PINEL P, CRUICKSHANK C A, BEAUSOLEIL- MORRISON I, et al. A review of available methods for seasonal storage of solar thermal energy in residential applications[J]. Renewable and sustainable energy reviews, 2011, 15(7): 3341-3359. DOI: 10.1016/j.rser.2011.04.013.

[4] XU J, WANG R Z, LI Y. A review of available technologies for seasonal thermal energy storage[J]. Solar energy, 2014, 103: 610-638. DOI: 10.1016/j.solener.2013. 06.006.

[5] SCHMIDT T, MANGOLD D. Status of solar thermal seasonal storage in Germany[C]//ECOSTOCK ‘2006. 10th International Conference on Thermal Energy Storage. Stockton, USA, 2006.

[6] Drake Landing Solar Community. Borehole thermal energy storage(BTES)[EB/OL]. 2012. http://dlsc.ca.

[7] SIBBITT B, MCCLENAHAN D, DJEBBAR R, et al. Drake Landing Solar Community: Groundbreaking Solar[J]. High performing buildings, 2015: 36-46.

[8] LOTTNER V, SCHULZ M E, HAHNE E. Solar-assisted district heating plants: status of the German programme solarthermie-2000[J]. Solar energy, 2000, 69(6): 449-459. DOI: 10.1016/S0038-092X(00)00125-0.

[9] SCHMIDT T, MANGOLD D, MÜLLER-STEINHAGEN H. Central solar heating plants with seasonal storage in Germany[J]. Solar energy, 2004, 76(1/3): 165-174. DOI: 10.1016/j.solener.2003.07.025.

[10] ÖZTÜRK H H. Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for greenhouse heating[J]. Energy conversion and management, 2005, 46(9/10): 1523-1542. DOI: 10.1016/ j.enconman.2004.07.001.

[11] UTLU Z, AYDIN D, KINCAY O. Comprehensive thermodynamic analysis of a renewable energy sourced hybrid heating system combined with latent heat storage[J]. Energy conversion and management, 2014, 84: 311-325. DOI: 10.1016/j.enconman.2014.04.024.

[12] ESEN M. Thermal performance of a solar-aided latent heat store used for space heating by heat pump[J]. Solar energy, 2000, 69(1): 15-25. DOI: 10.1016/S0038- 092X(00)00015-3.

[13] TATSIDJODOUNG P, LE PIERRÈS N, LUO L G. A review of potential materials for thermal energy storage in building applications[J]. Renewable and sustainable energy reviews, 2013, 18: 327-349. DOI: 10.1016/j.rser. 2012.10.025.

[14] BENLI H. Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating[J]. Energy conversion and management, 2011, 52(1): 581-589. DOI: 10.1016/ j.enconman.2010.07.033.

[15] ZHU N, HU P F, XU L H, et al. Recent research and applications of ground source heat pump integrated with thermal energy storage systems: A review[J]. Applied thermal engineering, 2014, 71(1): 142-151. DOI: 10.1016/j.applthermaleng.2014.06.040.

[16] ALKILANI M M, SOPIAN K, ALGHOUL M A, et al. Review of solar air collectors with thermal storage units[J]. Renewable and sustainable energy reviews, 2011, 15(3): 1476-1490. DOI: 10.1016/j.rser.2010.10.019.

[17] STREICHER W. Final report of subtask C “Phase Change Materials” [R]. IEA Solar Heating and Coolingprogramme Task 32 Advanced Storage Concepts for Solar And Low Energy Buildings, 2008.

[18] 吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33(12): 3238-3245.

[19] 吴娟, 龙新峰. 热化学储能的研究现状与发展前景[J]. 现代化工, 2014, 34(9): 17-21.

[20] MICHEL B, NEVEU P, MAZET N. Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications[J]. Energy, 2014, 72(1): 702-716. DOI: 10.1016/j.energy.2014.05.097.

[21] METTE B, KERSKES H, DRÜCK H. Concepts of long-term thermochemical energy storage for solar thermal applications-Selected examples[J]. Energy procedia, 2012, 30: 321-330. DOI: 10.1016/j.egypro. 2012.11.038.

[22] N’TSOUKPOE K E, LIU H, LE PIERRÈS N, et al. A review on long-term sorption solar energy storage[J]. Renewable and sustainable energy reviews, 2009, 13(9): 2385-2396. DOI: 10.1016/j.rser.2009.05.008.

[23] CASEY S P, ELVINS J, RIFFAT S, et al. Salt impregnated desiccant matrices for ‘open’ thermo- chemical energy storage-Selection, synthesis and characterisation of candidate materials[J]. Energy and buildings, 2014, 84: 412-425. DOI: 10.1016/j.enbuild. 2014.08.028.

[24] MICHEL B, MAZET N, NEVEU P. Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution[J]. Applied energy, 2016, 180: 234-244. DOI: 10.1016/j.apenergy.2016.07.108.

[25] WEBER R, DORER V. Long-term heat storage with NaOH[J]. Vacuum, 2008, 82(7): 708-716. DOI: 10.1016/j.vacuum.2007.10.018.

[26] WEBER R. Heat storage with NaOH[C]//International Conference on Solar Heating, Cooling and Buildings. Graz, Austria, 2010.

[27] HAUER A. Adsorption systems for TES-Design and demonstration projects[M]//Paksoy H Ö, Ed. Thermal Energy Storage for Sustainable Energy Consumption, Netherlands: Springer,2007, 234: 409-427.

[28] HAUER A. Thermal energy storage with zeolite for heating and cooling applications[C]//Conference thermal energy storage with zeolite for heating and cooling applications. Shanghai, China: Science Press, 2002.

[29] YU N, WANG R Z, WANG L W, et al. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage[J]. Chemical engineering science, 2014, 111: 73-84. DOI: 10.1016/j.ces.2014.02.012. 

[30] MAURAN S, LAHMIDI H, GOETZ V. Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kWh by a solid/gas reaction[J]. Solar energy, 2008, 82(7): 623-636. DOI: j.solener.2008.01.002.

[31] LI T X, WANG R Z, KIPLAGAT J K, et al. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid-gas sorption system for seasonal storage of solar thermal energy[J]. Energy, 2013, 50: 454-467. DOI: 10.1016/j.energy.2012.11.043.

[32] DAGUENET-FRICK X, GANTENBEIN P, MÜLLER J, et al. Seasonal thermochemical energy storage: Comparison of the experimental results with the modelling of the falling film tube bundle heat and mass exchanger unit[J]. Renewable energy, 2016. DOI: 10.1016/j.renene.2016.10.005.

[33] BOER R, HAIJE W, VELDHUIS J B, et al. Solid sorption cooling with integrated storage: The SWEAT prototype[C]//The International conference on Heat Powered Cycles, HPC, 2004, Larnaca, Cyprus.

[34] N’TSOUKPOE K E, LE PIERRÈS N, LUO L G. Experimentation of a LiBr-H2O absorption process for long term solar thermal storage[J]. Energy procedia, 2012, 30: 331-341. DOI: 10.1016/j.egypro.2012.11.039.

[35] AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and sustainable energy reviews, 2015, 41: 356-367. DOI: 10.1016/j.rser.2014.08.054.

[36] LOURDUDOSS S, STYMNE H. A energy storing absorption heat pump process[J]. International journal of energy research, 1987, 11(2): 263-274. DOI: 10.1002/ er.4440110208.

[37] YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in energy and combustion science, 2013, 39(5): 489-514. DOI: 10.1016/j.pecs.2013.05.004.

[38] YU N, WANG R Z, LU Z S, et al. Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage[J]. International journal of heat and mass transfer, 2015, 84: 660-670. DOI: 10.1016/j.ijheatmasstransfer. 2015.01.065.

[39] KERSKES H, METTE B, ASENBECK S, et al. Experimental and numerical investigations on thermo chemical heat storage[C]//International Conference on Solar Heating, Cooling and Buildings. Graz, Austria, 2010.

[40] STITOU D, MAZET N, MAURAN S. Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning[J]. Energy, 2012, 41(1): 261-270. DOI: 10.1016/j.energy.2011.07.029.

文章导航

/