欢迎访问《新能源进展》官方网站!今天是
论文

等离子体表面改性N掺杂TiO2气凝胶的光催化性能研究

  • 刘梦磊 ,
  • 徐祖伟 ,
  • 赵海波
展开
  • 1. 华中科技大学煤燃烧国家重点实验室,武汉 430074;
    2. 华中科技大学中欧清洁与可再生能源学院,武汉 430074
刘梦磊(1993-),男,硕士研究生,主要从事半导体材料光催化制氢研究。

收稿日期: 2017-02-23

  修回日期: 2017-04-02

  网络出版日期: 2017-04-28

基金资助

国家自然科学基金项目(51522603)

A Study on Photocatalytic Water Splitting of Plasma-Induced Nitrogen Doped TiO2 Aerogels

  • LIU Meng-lei ,
  • XU Zu-wei ,
  • ZHAO Hai-bo
Expand
  • 1. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2017-02-23

  Revised date: 2017-04-02

  Online published: 2017-04-28

摘要

采用溶胶–凝胶及超临界CO2干燥合成了TiO2气凝胶,采用非平衡态氮气直流等离子体表面改性技术对气凝胶处理得到掺氮TiO2气凝胶(N-TiO2)。通过BET、UV-Vis、XRD、SEM、XPS等技术对样品的微观形貌、晶体结构及含氮量进行分析表征。结果表明,TiO2气凝胶具有远高于P25(DEGUSSA公司生产的商用二氧化钛)的孔隙率和比表面积。而在等离子体表面改性掺N之后,TiO2气凝胶依然能保持较高的孔隙率和比表面积。在甲醇作为牺牲剂的水溶液中分别对P25、纯TiO2气凝胶和N-TiO2气凝胶的光催化性能进行测试。结果表明,纯TiO2气凝胶与P25的催化效率基本一致,在高压汞灯作为光源的情况下最高产氢速率可达0.6 µmol/min。而通过等离子体表面改性掺N的N-TiO2气凝胶产氢速率是P25的1.5倍,达到0.9 µmol/min。

本文引用格式

刘梦磊 , 徐祖伟 , 赵海波 . 等离子体表面改性N掺杂TiO2气凝胶的光催化性能研究[J]. 新能源进展, 2017 , 5(2) : 91 -96 . DOI: 10.3969/j.issn.2095-560X.2017.02.002

Abstract

TiO2 aerogels are prepared by sol-gel method and CO2 supercritical drying, then Nitrogen atom is introduced into TiO2 lattice by Non-equilibrium nitrogen DC-arc plasma treatment. Consequently, nitrogen-doped TiO2 (N-TiO2) nanoparticles are prepared in this study. The content of Nitrogen, crystalline phase, surface morphology and pore structure of TiO2 samples are carefully characterized and analyzed by BET, UV-Vis, XRD, SEM and XPS. The results show that TiO2 aerogels are with higher surface area and much more holes than P25 (a commercial TiO2 made by DEGUSSA). And the porosity and surface area of TiO2 aerogels which treated after Non-equilibrium nitrogen DC-arc plasma treatment are still remain quite high. As for photocatalytic water splitting efficiency, P25, pure TiO2 aerogels and N-TiO2 aerogels are tested under high-pressure mercury lamp with the solution of water and methanol. It is observed that the hydrogen production rate of pure TiO2 aerogels and P25 are nearly the same, reach around 0.6 µmol/min. And the hydrogen production rates of TiO2 aerogels with N-plasma doping attains 1.5 times higher than the hydrogen production rates of commercial P25.

参考文献

[1] 范崇政, 肖建平, 丁延伟. 纳米TiO2的制备与光催化反应研究进展[J]. 科学通报, 2001, 46(4): 265-273. DOI: 10.3321/j.issn:0023-074X.2001.04.001.

[2] CHOI Y, UMEBAYASHI T, YOSHIKAWA M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts[J]. Journal of materials science, 2004, 39(5): 1837-1839. DOI: 10.1023/B:JMSC.0000016198.73153.31.

[3] 田地, 余刚, 张彭义, 等. 碳黑改性二氧化钛对气相中甲苯的光催化降解[J]. 太阳能学报, 2002, 23(1): 66-69. DOI: 10.3321/j.issn:0254-0096.2002.01.014.

[4] YANG K S, DAI Y, HUANG B B. Study of the nitrogen concentration influence on N-doped TiO2 anatase from first-principles calculations[J]. The journal of physical chemistry C, 2007, 111(32): 12086-12090. DOI: 10.1021/jp067491f.

[5] 费贤翔, 熊予莹. 具有可见光活性的纳米掺氮TiO2制备和表征[J]. 功能材料与器件学报, 2005, 11(2): 223-227.

[6] IN S, ORLOV A, BERG R, et al. Effective visible light-activated B-doped and B,N-codoped TiO2 photo- catalysts[J]. Journal of the american chemical society, 2007, 129(45): 13790-13791. DOI: 10.1021/ja0749237.

[7] OHNO T, MITSUI T, MATSUMURA M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light[J]. Chemistry letters, 2003, 32(4): 364-365. DOI: 10.1246/cl.2003.364.

[8] UMEBAYASHI T, YAMAKI T, TANAKA S, et al. Visible light-induced degradation of methylene blue on S-doped TiO2[J]. Chemistry letters, 2003, 32(4): 330-331. DOI: 10.1246/cl.2003.330.

[9] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271. DOI: 10.1126/science.1061051.

[10] JAGADALE T C, TAKALE S P, SONAWANE R S, et al. N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method[J]. The journal of physical chemistry C, 2008, 112(37): 14595-14602. DOI: 10.1021/jp803567f.

[11] YANG M C, YANG T S, WONG M S. Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition[J]. Thin solid films, 2004, 469-470: 1-5. DOI: 10.1016/j.tsf.2004.06.189.

[12] YAMADA K, NAKAMURA H, MATSUSHIMA S, et al. Preparation of N-doped TiO2 particles by plasma surface modification[J]. Comptes rendus chimie, 2006, 9(5/6): 788-793. DOI: 10.1016/j.crci.2005.05.016.

[13] SUZUKI Y, GONZALEZ-AGUILAR J, TRAISNEL N, et al. Non-equilibrium nitrogen DC-arc plasma treatment of TiO2 nanopowder[J]. Journal of nanoscience and nanotechnology, 2009, 9(1): 256-260. DOI: 10.1166/jnn. 2009.J035.

[14] PARK J H, KIM S, BARD A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting[J]. Nano letters, 2006, 6(1): 24-28. DOI: 10.1021/nl051807y.

[15] WANG G M, WANG H Y, LING Y C, et al. Hydrogen-treated TiO2 nanowire arrays for photoelectro- chemical water splitting[J]. Nano letters, 2011, 11(7): 3026-3033. DOI: 10.1021/nl201766h.

[16] ZHOU W J, YIN Z Y, DU Y P, et al. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt hetero- structures for enhanced photocatalytic activities[J]. Small, 2013, 9(1): 140-147. DOI: 10.1002/smll. 201201161.

[17] 余家国, 赵修建, 陈文梅, 等. 太阳光TiO2多孔纳米薄膜光催化降解有机磷农药的研究[J]. 太阳能学报, 2000, 21(2): 165-170. DOI: 10.3321/j.issn:0254-0096. 2000.02.009.

[18] BISSON A, RIGACCI A, LECOMTE D, et al. Drying of silica gels to obtain aerogels: phenomenology and basic techniques[J]. Drying technology, 2003, 21(4): 593-628. DOI: 10.1081/DRT-120019055.

[19] JITPUTTI J, PAVASUPREE S, SUZUKI Y, et al. Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method[J]. Journal of solid state chemistry, 2007, 180(5): 1743-1749. DOI: 10.1016/j.jssc. 2007.03.018.

[20] ZHANG J, XU Q, FENG Z C, et al. Importance of the relationship between surface phases and photocatalytic activity of TiO2[J]. Angewandte chemie international edition, 2008, 47(9): 1766-1769. DOI: 10.1002/anie. 200704788.

[21] DEPERO L E, SANGALETTI L, ALLIERI B, et al. Niobium-titanium oxide powders obtained by laser- induced synthesis: microstructure and structure evolution from diffraction data[J]. Journal of materials research, 1998, 13(6): 1644-1649. DOI: 10.1557/JMR.1998.0226.

[22] HIGASHIMOTO S, USHIRODA Y, AZUMA M. Electrochemically assisted photocatalysis of hybrid WO3/TiO2 films: effect of the WO3 structures on charge separation behavior[J]. Topics in catalysis, 2008, 47(3/4): 148-154. DOI: 10.1007/s11244-007-9026-3.

[23] SU R, BECHSTEIN R, SØ L, et al. How the anatase-to-rutile ratio influences the photoreactivity of TiO2[J]. The journal of physical chemistry C, 2011, 115(49): 24287-24292. DOI: 10.1021/jp2086768.

文章导航

/