欢迎访问《新能源进展》官方网站!今天是
论文

膨润土中甲烷水合物生成特性的实验研究

  • 陈 龙 ,
  • 张 郁 ,
  • 李小森 ,
  • 陈朝阳 ,
  • 李 刚
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院天然气水合物重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院广州天然气水合物研究中心,广州 510640;
    5. 中国科学院大学,北京 100049
陈 龙(1991-),男,硕士研究生,目前从事天然气水合物开采实验研究。

收稿日期: 2017-01-18

  修回日期: 2017-03-06

  网络出版日期: 2017-04-28

基金资助

国家自然科学基金项目(51476174,51276182,51376183);
中国科学院重点部署项目(KGZD-EW-301-2);
广东省自然科学基金(2014A030313669);
国家海洋地质专项(GHZ2012006003);
中国石油–中国科学院科技合作项目(2015A-4813)

Experimental Study of Methane Hydrate Formation in Bentonite

  • CHEN Long ,
  • ZHANG Yu ,
  • LI Xiao-sen ,
  • CHEN Zhao-yang ,
  • LI Gang
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China;
    2. CAS Key Laboratory of Gas Hydrate, Guangzhou, 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, China;
    4. Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China;
    5. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2017-01-18

  Revised date: 2017-03-06

  Online published: 2017-04-28

摘要

恒容条件下,实验研究了甲烷水合物在膨润土中的生成规律,考察了不同水浴温度(3℃、5℃、7℃和9℃)和不同初始压力(9 MPa、12 MPa和15 MPa)对甲烷水合物生成规律的影响。研究表明:水合物在膨润土中生成的诱导时间很短,生成速度快,初始压力为12 MPa、水浴温度为3℃时,诱导时间最短为16.5 min;当系统温度降低到设置温度时,水合物基本停止生成,水合物的生成受到传质过程控制;水合物停止生成后,最终压力均明显高于纯水体系甲烷水合物相平衡压力。水的最终转化率介于55.73%和61.93%之间,水的最终转化率随着水浴温度降低而增大,但是增大的幅度并不显著。

本文引用格式

陈 龙 , 张 郁 , 李小森 , 陈朝阳 , 李 刚 . 膨润土中甲烷水合物生成特性的实验研究[J]. 新能源进展, 2017 , 5(2) : 104 -109 . DOI: 10.3969/j.issn.2095-560X.2017.02.04

Abstract

The formation behaviors of methane hydrate in bentonite were experimentally studied. The experiments were carried out under conditions of bath temperatures of 3oC, 5oC, 7oC and 9oC, and initial pressures of 9 MPa, 12 MPa and 15 MPa. The experimental results indicate that the induction time of methane hydrate formation is very short and the methane hydrate formation rate is very fast. When the initial pressure is 12 MPa and the bath temperature is 3oC, the induction time is 16.5 min and it’s shorter than that of other experiments. When the temperature of the system is lower than the setting temperature, the hydrate formation halted. The hydrate formation is controlled by the process of mass transfer. After the hydrate stops forming, the final pressure is significantly higher than the phase equilibrium pressure of bulk hydrate. The final conversion of water ranges between 55.73% and 61.93%. The final water conversion decreases with the increase of bath temperature, but lower bath temperature have no significant help to enhance the final conversion of water.

参考文献

[1] LEE J Y, RYU B J, YUN T S, et al. Review on the gas hydrate development and production as a new energy resource[J]. KSCE journal of civil engineering, 2011, 15(4): 689-696.

[2] 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 北京: 化学工业出版社, 2008: 1-100.

[3] SEOL J, LEE H. Natural gas hydrate as a potential energy resource: From occurrence to production[J]. Korean journal of chemical engineering, 2013, 30(4): 771-786. DOI: 10.1007/s11814-013-0033-8.

[4] 卢振权, 祝有海, 张永勤, 等. 青海省祁连山冻土区天然气水合物存在的主要证据[J]. 现代地质, 2010, 24(2): 329-336. DOI: 10.3969/j.issn.1000-8527.2010.02.018

[5] WU N Y, ZHANG H, SU X, et al. High concentrations of hydrate in disseminated forms found in very fine-grained sediments of Shenhu Area, South China Sea[J]. Terra nostra, 2007, 1-2: 236-237.

[6] SU Z, HE Y, WU N Y, et al. Evaluation on gas production potential from laminar hydrate deposits in Shenhu Area of South China Sea through depressurization using vertical wells[J]. Journal of Petroleum Science and Engineering, 2012, 86-87: 87-98.

[7] 王静丽, 梁金强, 宗欣, 等. 南海北部神狐海域天然气水合物差异性分布的控制因素[J]. 海洋地质前沿, 2015, 31(1): 24-30. DOI: 10.16028/j.1009-2722.2015. 01004.

[8] UCHIDA T, TAKEYA S, CHUVILIN E M, et al. Decomposition of methane hydrates in sand, sandstone, clays, and glass beads[J]. Journal of geophysical research: solid earth, 2004, 109(B5): B05206. DOI: 10.1029/ 2003JB002771.

[9] 张鹏, 吴青柏, 王英梅, 等. 非饱和介质中甲烷水合物形成与分解的水分变化特征[J]. 地球物理学进展, 2010, 25(4): 1339-1345. DOI: 10.3969/j.issn.1004-2903. 2010.04.023.

[10] SUN S C, YE Y G, LIU C L, et al. P-T stability conditions of methane hydrate in sediment from South China Sea[J]. Journal of nature gas chemistry, 2011, 20(5): 531-536. DOI: 10.1016/S1003-9953(10)60224-1.

[11] 蒋观利, 吴青柏, 杨玉忠, 等. 砂土中不同产状甲烷水合物形成和分解过程研究[J]. 天然气地球科学, 2013, 24(6): 1305-1310.

[12] SAW V K, UDAYABHANU G N, MANDAL A, et al. Methane hydrate formation and dissociation in the presence of bentonite clay suspension [J]. Chemical Engineering & Technology, 2013, 36(5): 810-818. DOI: 10.1002/ceat.201200537.

[13] KUMAR A, SAKPAL M T, ROY S, et al. Methane hydrate formation in a test sediment of sand and clay at vario[J]. Canadian journal of chemistry, 2014, 93(8): 874-881. DOI: 10.1139/cjc-2014-0537.

[14] 贾佳林, 张郁, 李刚, 等. 南海海泥中甲烷水合物生成特性的实验研究[J]. 现代地质, 2013, 27(6): 1373-1378. DOI: 10.3969/j.issn.1000-8527.2013.06.014.

[15] LI X S, ZHANG Y, GANG L, et al. Gas hydrate equilibrium dissociation conditions in porous media using two thermodynamic approaches[J]. The journal of chemical thermodynamics, 2008, 40(9): 1464-1474. DOI: 10.1016/j.jct.2008.04.009.

[16] SUN D, ENGLEZOS P. Storage of CO2 in a partially water saturated porous medium at gas hydrate formation conditions[J]. International journal of greenhouse gas control, 2014, 25: 1-8. DOI: 10.1016/j.ijggc.2014.03.008.

[17] CHA S B, OUAR H, WILDEMAN T R, et al. A third-surface effect on hydrate formation [J]. The journal physical chemistry, 1988, 92(23): 6492-6494. DOI: 10.1021/j100334a006.

[18] 裘俊红, 郭天民. 甲烷水合物在纯水中的生成动力学[J]. 化工学报, 1998, 49(3): 383-386.

文章导航

/