欢迎访问《新能源进展》官方网站!今天是
论文

硝酸熔盐在石墨泡沫内的流动性能分析

  • 郭茶秀
展开
  • 郑州大学化工与能源学院,郑州 450001

收稿日期: 2017-01-21

  修回日期: 2017-03-22

  网络出版日期: 2017-04-28

基金资助

国家自然科学基金项目(51176173);
河南省科技攻关计划项目(162102210001)

Flow Characteristics of Molten Salt in Graphite Foam

  • GUO Cha-xiu
Expand
  • School of Chemical and Energy Engineering, Zhengzhou University, Zhengzhou 45000, China

Received date: 2017-01-21

  Revised date: 2017-03-22

  Online published: 2017-04-28

摘要

基于均匀颗粒填充床模型,采用体心立方体模型构建了石墨泡沫材料流域的微观模型,并利用COMSOL软件数值得到了硝酸熔盐在其内流动的速度和压力分布。进而研究了其压力梯度与流速之间的关系,并分析了孔隙率及孔径等参数对石墨泡沫内流体压降的影响。研究结果表明,孔隙率ε和孔径是影响多孔石墨泡沫渗流性能的主要因素,孔隙率越大,渗透能力越强。

本文引用格式

郭茶秀 . 硝酸熔盐在石墨泡沫内的流动性能分析[J]. 新能源进展, 2017 , 5(2) : 117 -121 . DOI: 10.3969/j.issn.2095-560X.2017.02.006

Abstract

Based on the structure of a uniform packed bed of spherical particles and body-centered cell model, the micro flow region model is put forward to conduct the numerical analysis of the flow characteristics of molten salt in graphite foam. After the distributions of flow velocity and pressure of molten salt are obtained by COMSOL software, the relationship between the pressure gradient and the velocity is presented, and the influence of porosity on the pressure drop is got. The results show that the porosity and the structure of graphite foam are the main factors to account for the flow characteristics of graphite foam, and the bigger porosity could lead to a higher permeability.

参考文献

[1] 李凯, 栾志强. 中间相沥青基炭泡沫[J]. 新型炭材料, 2004, 19(1): 77-78. DOI: 10.3321/j.issn:1007-8827.2004. 01.016.

[2] ERGUN S. Fluid flow through packed column[J]. Journal of materials science and chemical engineering, 1952, 48(2): 89-94.

[3] GALLEGO C N, KLETT J W. Carbon foams for thermal management[J]. Carbon, 2003, 41(7): 1461-1466. DOI: 10.1016/S0008-6223(03)00091-5.

[4] YU Q J, THOMPSON B E, STRAATMAN A G. A unit cube-based model for heat transfer and fluid flow in porous carbon foam[J]. Journal of heat transfer, 2006, 128(4): 352-360. DOI: 10.1115/1.2165203.

[5] 张新铭. 石墨泡沫制备及导热性能研究[D]. 重庆: 重庆大学, 2010.

[6] A. M. DRUMA A M, ALAM M K, DRUMA C. Analysis of thermal conduction in carbon foams[J]. International journal of thermal sciences, 2004, 43(7): 689-695. DOI: 10.1016/j.ijthermalsci.2003.12.004.

[7] STRAATMAN A G, GALLEGO N C, THOMPSON B E, et al. Thermal characterization of porous carbon foam-convection in parallel flow[J]. International journal of heat and mass transfer, 2006, 49(11/12): 1991-1998. DOI: 10.1016/j.ijheatmasstransfer.2005.11.028.

[8] TUCKERMAN D B. Heat transfer microstructures for integrated circuits[D]. Palo Alto: Stanford University, 1984.

[9] KAVIANY M. Principles of heat transfer in porous media[M]. New York: Spring-Verlag, 1995.

[10] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001.

[11] 贝尔. 多孔介质流体动力学[M]. 李竞生, 陈崇希, 译. 北京: 中国建筑工业出版社, 1983.

文章导航

/