欢迎访问《新能源进展》官方网站!今天是
论文

氨吸附式制冷技术研究进展

  • 曾 涛 ,
  • 何兆红 ,
  • 小林敬幸 ,
  • 黄宏宇
展开
  • 1. 名古屋大学,名古屋 464-8601;
    2. 中国科学院广州能源研究所,广州 510640
曾 涛(1986-),男,博士研究生,主要从事制冷与能源工程研究。

收稿日期: 2016-07-22

  修回日期: 2017-03-17

  网络出版日期: 2017-04-28

Research Progress of Adsorption Refrigeration Using Ammonia as Adsorbate

  • ZENG Tao1 ,
  • HE Zhao-hong2 ,
  • KOBAYASHI Noriyuki1 ,
  • HUANG Hong-yu2
Expand
  • 1. Nagoya University, Nagoya 464-8601, Japan;
    2. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2016-07-22

  Revised date: 2017-03-17

  Online published: 2017-04-28

摘要

氨吸附式制冷系统具有制冷量大、传质快等优点,是一种优良的吸附式制冷系统。氨吸附式制冷系统可利用船舶余热、太阳能以及工业过程余热等热量提供冷量,具有节能环保作用。本文从氨吸附式制冷系统吸附工质对、热力循环以及用途等方面开展探讨。

本文引用格式

曾 涛 , 何兆红 , 小林敬幸 , 黄宏宇 . 氨吸附式制冷技术研究进展[J]. 新能源进展, 2017 , 5(2) : 146 -150 . DOI: 10.3969/j.issn.2095-560X.2017.02.011

Abstract

Ammonia adsorption refrigeration system is an excellent system with advantages of good cooling capacity and high performance of mass transfer. It can generate cooling power by using ship’s waste heat, solar energy and industrial process waste heat, and etc, which is environment friendly and energy saving. Adsorption working pair, heat & mass transfer and applications of this system were discussed in this paper.

参考文献

[1] 王如竹, 王丽伟, 吴静怡. 吸附式制冷理论与应用[M]. 北京: 科学出版社, 2007: 97.

[2] ASKALANY A A, SALEM M, ISMAEL I M, et al. An overview on adsorption pairs for cooling[J]. Renewable and sustainable energy reviews, 2013, 19: 565-572. DOI: 10.1016/j.rser.2012.11.037.

[3] 王树刚, 王如竹, 曲天非. 活性炭-氨吸附式制冷循环中吸附床的传热传质性能研究[J]. 工程热物理学报, 2002, 23(4): 476-478. DOI: 10.3321/j.issn:0253-231X. 2002.04.023.

[4] 王海民. 船舶余热驱动的活性炭—氨吸附式制冷研究[D]. 厦门: 集美大学, 2013.

[5] 梅宁, 谢迎春, 徐霞. 吸附式制冷单管吸附床传热传质的数值模拟及分析[J]. 青岛海洋大学学报, 2003, 33(3): 469-475. DOI: 10.3969/j.issn.1672-5174.2003.03. 018.

[6] 王丽伟, 王如竹, 吴静怡, 等. 氯化钙-氨的吸附特性研究及在制冷中的应用[J]. 中国科学 E辑: 技术科学, 2004, 34(3): 268-279. DOI: 10.3321/j.issn:1006-9275. 2004.03.004.

[7] ZHOU Z S, WANG L W, JIANG L, et al. Non-equilibrium sorption performances for composite sorbents of chlorides-ammonia working pairs for refrigeration[J]. International journal of refrigeration, 2016, 65: 60-68. DOI: 10.1016/j.ijrefrig.2015.11.014.

[8] 田波. 混合吸附剂的渗透率与导热性能试验研究[D]. 上海: 上海交通大学, 2011.

[9] 金哲权. 吸附/解吸过程中混合吸附剂传热传质性能研究[D]. 上海: 上海交通大学, 2012.

[10] WANG K, WU J Y, WANG R Z, et al. Effective thermal conductivity of expanded graphite-CaCl2 composite adsorbent for chemical adsorption chillers[J]. Energy conversion and management, 2006, 47(13/14): 1902-1912. DOI: 10.1016/j.enconman.2005.09.005.

[11] LI T X, WANG R Z, WANG L W, et al. Study on the heat transfer and sorption characteristics of a consolidated composite sorbent for solar-powered thermochemical cooling systems[J]. Solar energy, 2009, 83(9): 1742-1755. DOI: 10.1016/j.solener.2009.06.013.

[12] 吴永生, 郑青榕. 氨在活性炭-膨胀石墨混合吸附剂上的吸附平衡分析[J]. 集美大学学报(自然科学版), 2014, 19(1): 42-46. DOI: 10.3969/j.issn.1007-7405.2014. 01.008.

[13] ZAJACZKOWSKI B, KRÓLICKI Z, JE?OWSKI A. New type of sorption composite for chemical heat pump and refrigeration systems[J]. Applied thermal engineering, 2010, 30(11/12): 1455-1460. DOI: 10.1016/j.applthermaleng. 2010.03.005.

[14] ZHONG Y, CRITOPH R E, THORPE R N, et al. Dynamics of BaCl2–NH3 adsorption pair[J]. Applied thermal engineering, 2009, 29(5/6): 1180-1186. DOI: 10.1016/j.applthermaleng.2008.06.015.

[15] ZHONG Y, CRITOPH R E, THORPE R N, et al. Isothermal sorption characteristics of the BaCl2–NH3 pair in a vermiculite host matrix[J]. Applied thermal engineering, 2007, 27(14/15): 2455-2462. DOI: 10.1016/ j.applthermaleng.2007.02.011.

[16] VESELOVSKAYA J V, CRITOPH R E, THORPE R N, et al. Novel ammonia sorbents “porous matrix modified by active salt” for adsorptive heat transformation: 3. Testing of “BaCl2/vermiculite” composite in a lab-scale adsorption chiller[J]. Applied thermal engineering, 2010, 30(10): 1188-1192. DOI: 10.1016/j.applthermaleng.2010. 01.035.

[17] GREKOVA A D, VESELOVSKAYA J V, TOKAREV M M, et al. Novel ammonia sorbents “porous matrix modified by active salt” for adsorptive heat transformation: 5. Designing the composite adsorbent for ice makers[J]. Applied thermal engineering, 2012, 37: 80-86. DOI: 10.1016/j.applthermaleng.2012.01.005.

[18] YAN T, LI T X, LI H, et al. Experimental study of the ammonia adsorption characteristics on the composite sorbent of CaCl2 and multi-walled carbon nanotubes[J]. International journal of refrigeration, 2014, 46: 165-172. DOI: 10.1016/j.ijrefrig.2014.02.014.

[19] LI T X, WANG R Z, KIPLAGAT J K, et al. Performance study of a consolidated manganese chloride-expanded graphite compound for sorption deep-freezing processes[J]. Applied energy, 2009, 86(7/8): 1201-1209. DOI: 10.1016/ j.apenergy.2008.06.004.

[20] 段琼. 氯化钙在粗孔硅胶上的单层分散及其氨吸附研究[J]. 四川化工, 2010, 13(2): 15-20. DOI: 10.3969/ j.issn.1672-4887.2010.02.005.

[21] 毛雪峰, 张莹, 李丹凤, 等. 氯化钙/大球硅胶复合吸附剂的氨吸附研究[J]. 现代化工, 2011, 31(5): 56-59.

[22] 林贵平, 袁修干, 梅志光, 等. 太阳能固体吸收式制冰机[J]. 太阳能学报, 1993, 14(2): 101-104.

[23] 余舜辉. 氯化钙-氨工质对吸附制冷性能强化的理论及实验研究[D]. 广州: 华南理工大学, 2001.

[24] WANG L W, WANG R Z, WU J Y, et al. Compound adsorbent for adsorption ice maker on fishing boats[J]. International journal of refrigeration, 2004, 27(4): 401-408. DOI: 10.1016/j.ijrefrig.2003.11.010.

[25] 袁晓军, 欧阳新萍, 刘妮, 等. 氯化钙-氨吸附式制冷的实验研究[J]. 上海理工大学学报, 2004, 26(5): 409-411, 417. DOI: 10.3969/j.issn.1007-6735.2004.05.006.

[26] 段龙, 孙文哲, 韩笑生, 等. 氯化钙-氨吸附式制冷的实验研究[J]. 低温与特气, 2013, 31(2): 6-9. DOI: 10.3969/j.issn.1007-7804.2013.02.003.

[27] LU Z S, WANG R Z, LI T X, et al. Experimental investigation of a novel multifunction heat pipe solid sorption icemaker for fishing boats using CaCl2/activated carbon compound–ammonia[J]. International journal of refrigeration, 2007, 30(1): 76-85. DOI: 10.1016/j.ijrefrig. 2006.07.001.

[28] CRITOPH R E. Forced convection adsorption cycle with packed bed heat regeneration[J]. International journal of refrigeration, 1999, 22(1): 38-46. DOI: 10.1016/S0140- 7007(97)00036-4.

[29] 王健, 胡远扬, 王丽伟, 等. CaCl2-BaCl2-NH3二级吸附式制冷系统及其制冷性能与仿真[J]. 上海交通大学学报, 2011, 45(9): 1389-1394.

[30] 罗伟莉, 王健, 王丽伟, 等. 采用SrCl2-NH4Cl-NH3工质对的二级吸附式冷冻循环性能[J]. 化工学报, 2012, 63(4): 1004-1010. DOI: 10.3969/j.issn.0438-1157.2012. 04.002.

[31] METCALF S J, CRITOPH R E, TAMAINOT-TELTO Z. Optimal cycle selection in carbon-ammonia adsorption cycles[J]. International journal of refrigeration, 2012, 35(3): 571-580. DOI: 10.1016/j.ijrefrig.2011.11.006.

[32] 彭庆龙. 内燃机尾气驱动的化学吸附式制冷系统仿真研究[D]. 长沙: 中南大学, 2014.

[33] 宁尚斌. 太阳能固体吸附式光热冰箱系统的理论及实验研究[D]. 北京: 北京工业大学, 2012.

[34] 高鹏. 低品位热能驱动的小型冷电联供系统的性能研究[D]. 上海: 上海交通大学, 2015.

[35] ZHU F Q, JIANG L, WANG L W, et al. Experimental investigation on a MnCl2-CaCl2-NH3 resorption system for heat and refrigeration cogeneration[J]. Applied energy, 2016, 181: 29-37. DOI: 10.1016/j.apenergy.2016.08.015.

文章导航

/