涂炭铝箔在石墨/磷酸铁锂电池中的应用研究
收稿日期: 2017-02-17
修回日期: 2017-04-15
网络出版日期: 2017-04-28
Investigation on Graphite/LiFePO4 Batteries Fabircated by Carbon-Coated Aluminum Foil Current Collector
Received date: 2017-02-17
Revised date: 2017-04-15
Online published: 2017-04-28
本文分别以普通铝箔(AF)和涂碳铝箔(CCAF)作为正极集流体,制作成9 Ah软包石墨/磷酸铁锂电池(C/LiFePO4),并采用多种测试手段研究和对比了各电池的电化学性能。研究结果显示,采用涂碳铝箔可增大活性物质与集流体间的接触面积,提高电导率,有效降低电池极化。CCAF电池的电化学性能优于AF电池,具体表现为:交流内阻(ACR)降低了7.30 mΩ,相同荷电状态(SOC)下的直流内阻(DCR)降低了9 ~ 12 mΩ,放电平台电压提高了40 mV,瞬间电压反弹速率(dV/dt)降低了0.94 V/h,−20℃的1 C放电效率提高了2.4%,5 C放电容量与 1 C放电容量的比率提高了10.6%,5 C放电温升降低了15.2℃,5 C循环500周容量保持率提高了7.06%。
关键词: 涂碳铝箔; 电化学阻抗; 倍率性能; 循环性能; 磷酸铁锂(LiFePO4)
陈 鹏 , 任 宁 , 姬学敏 , 常林荣 , 邓吉阳 , 苏 锋 , 李洪涛 . 涂炭铝箔在石墨/磷酸铁锂电池中的应用研究[J]. 新能源进展, 2017 , 5(2) : 157 -162 . DOI: 10.3969/j.issn.2095-560X.2017.02.013
The electrochemical performances of pouch type 9 Ah lithium iron phosphate/graphite (C/LiFePO4) batteries fabricated with conventional aluminum foil (AF) and carbon coated aluminum foil (CCAF) cathode current collector were studied and compared. Results show that the CCAF current collector could increase the interaction area of active materials with current collector, which improves the overall electrical conductivity and reduces battery resistance and polarization. The electrochemical performance of the batteries fabricated by CCAF is superior to that of AF, and results show as follows: the alter-nating current resistance (ACR) reduced by 7.30 mΩ, the direct current resistance decreased by 9 ~ 12 mΩ under the same state of charge (SOC) condition, the plateau voltage increased by 40 mV and the instant voltage relaxation rate (dV/dt) decreased by 0.94 V/h, the capacity retention increased by 2.4% under 1 C at −20oC, ratio of 5 C discharge capacity to 1 C discharge capacity enhanced by 10.6%, the discharge temperature decreased by 15.2oC at 5 C high-rate, and the capacity retention after 500 circles at 5 C increased by 7.06%.
[1] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive- electrode materials for rechargeable lithium batteries[J]. Journal of the electrochemical society, 1997, 144(4): 1188-1194. DOI: 10.1149/1.1837571.
[2] HUANG H, YIN S C, NAZAR L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J]. Electrochemical and solid-state letters, 2001, 4(10): A170-A172. DOI: 10.1149/1.1396695.
[3] CROCE F, D’EPIFANIO A, HASSOUN J, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode[J]. Electrochemical and solid-state letters, 2002, 5(3): A47-A50. DOI: 10.1149/1.1449302.
[4] MURUGANANTHAM R, SIVAKUMAR M, SUBADEVI R. Enhanced rate performance of multiwalled carbon nanotube encrusted olivine type composite cathode material using polyol technique[J]. Journal of power sources, 2015, 300: 496-506. DOI: 10.1016/j.jpowsour.2015.09.103.
[5] PAOLELLA A, TURNER S, BERTONI G, et al. Accelerated removal of Fe-antisite defects while nanosizing hydrothermal LiFePO4 with Ca2+[J]. Nano letters, 2016, 16(4): 2692-2697. DOI: 10.1021/acs.nanolett.6b00334.
[6] 陈鹏, 钱龙, 邓昌源, 等. 石墨负极材料形态对LiFePO4动力电池性能的影响[J]. 新能源进展, 2016, 4(3): 195-200. DOI: 10.3969/j.issn.2095-560X.2016.03. 005.
[7] 邓龙征, 吴锋, 高旭光, 等. 涂碳铝箔对磷酸铁锂电池性能影响研究[J]. 无机化学学报, 2014, 30(4): 770-778. DOI: 10.11862/CJIC.2014.047.
[8] RUFFO R, HONG S S, CHAN C K, et al. Impedance analysis of silicon nanowire lithium ion battery anodes[J]. The journal of physical chemistry C, 2009, 113(26): 11390-11398. DOI: 10.1021/jp901594g.
[9] YI T F, XIE Y, SHU J F, et al. Structure and electrochemical performance of niobium-substituted spinel lithium titanium oxide synthesized by solid-state method[J]. Journal of the electrochemical society, 2011, 158(3): A266-A274. DOI: 10.1149/1.3533391.
[10] FULLER T F, DOYLE M, NEWMAN J. Relaxation phenomena in lithium-ion-insertion cells[J]. Journal of the electrochemical society, 1994, 141(4): 982-990. DOI: 10.1149/1.2054868.
[11] DOYLE M, NEWMAN J. The use of mathematical modeling in the design of lithium/polymer battery systems[J]. Electrochimica acta, 1995, 40(13/14): 2191-2196. DOI: 10.1016/0013-4686(95)00162-8.
[12] BERNARDI D M, GO J Y. Analysis of pulse and relaxation behavior in lithium-ion batteries[J]. Journal of power sources, 2011, 196(1): 412-427. DOI: 10.1016/ j.jpowsour.2010.06.107.
/
〈 |
|
〉 |