微生物耐受糠醛机制的研究进展
收稿日期: 2017-02-22
修回日期: 2017-04-17
网络出版日期: 2017-06-30
基金资助
国家自然科学基金项目(21506215)
Research and Development on the Microbial Furfural-Tolerance Mechanism
Received date: 2017-02-22
Revised date: 2017-04-17
Online published: 2017-06-30
张小欢 , 张 宇 , 王 琼 , 亓 伟 , 许敬亮 , 王忠铭 , 袁振宏 . 微生物耐受糠醛机制的研究进展[J]. 新能源进展, 2017 , 5(3) : 189 -196 . DOI: 10.3969/j.issn.2095-560X.2017.03.005
Furfural from xylose dehydration inhibits the microbial cell growth and subsequent fermentation. High temperature liquid water and dilute sulfuric acid are excellent ways to remove semi-cellulose from biomass, while furfural would be inevitably produced. In this paper, the studies on the microbial furfural-resistance mechanism were summarized. The production/degradation pathway of furfural and its negative impact on microorganism were described. The protein response, gene response and redox balance involved in the furfural degradation process were analyzed and the effects of furfural on the cellular morphology and oxidative stress were studied.
Key words: furfural; tolerance mechanism; degradation pathway; redox balance; response analysis
[1] 王红彦, 张轩铭, 王道龙, 等. 中国玉米芯资源量估算及其开发利用[J]. 中国农业资源与区划, 2016, 37(1): 1-8. DOI: 10.7621/cjarrp.1005-9121.20160101.
[2] WANG J Q, HIRABAYASHI S, MORI T, et al. Improvement of ethanol production by recombinant expression of pyruvate decarboxylase in the white-rot fungus Phanerochaete sordida YK-624[J]. Journal of bioscience and bioengineering, 2016, 122(1): 17-21. DOI: 10.1016/j.jbiosc.2015.12.002.
[3] KUENZ A, GALLENMÜELLER Y, WILLKE T, et al. Microbial production of itaconic acid: developing a stable platform for high product concentrations[J]. Applied microbiology and biotechnology, 2012, 96(5): 1209-1216. DOI: 10.1007/s00253-012-4221-y.
[4] LOOW Y L, WU T Y, JAHIM J M, et al. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment[J]. Cellulose, 2016, 23(3): 1491-1520. DOI: 10.1007/s10570-016-0936-8.
[5] 李洪兴, 张笑然, 沈煜, 等. 纤维素乙醇生物加工过程中的抑制物对酿酒酵母的影响及应对措施[J]. 生物工程学报, 2009, 25(9): 1321-1328. DOI: 10.3321/j.issn:1000-3061.2009.09.007.
[6] 余强, 庄新姝, 袁振宏, 等. 高温液态水中甜高粱渣半纤维素水解及其机理[J]. 化工学报, 2012, 63(2): 599-605. DOI: 10.3969/j.issn.0438-1157.2012.02.037.
[7] 吕双亮, 庄新姝, 余强, 等. 渗滤与间歇高温液态水预处理甘蔗渣的对比研究[J]. 太阳能学报, 2015, 36(3): 664-670. DOI: 10.3969/j.issn.0254-0096.2015.03.024.
[8] THOMSEN M H, THYGESEN A, THOMSEN A B. Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw[J]. Applied microbiology and biotechnology, 2009, 83(3): 447-455. DOI: 10.1007/s00253-009-1867-1.
[9] ZHENG D, BAO J G, LU J M, et al. Isolation and characterization of a furfural-degrading bacterium Bacillus cereus sp. strain DS1[J]. Current microbiology, 2015, 70(2): 199-205. DOI: 10.1007/s00284-014-0702-9.
[10] HANLY T J, HENSON M A. Dynamic model-based analysis of furfural and hmf detoxification by pure and mixed batch cultures of S. cerevisiae and S. stipitis[J]. Biotechnology and bioengineering, 2014, 111(2): 272-284. DOI: 10.1002/bit.25101.
[11] BEHERA S, ARORA R, NANDHAGOPAL N, et al. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass[J]. Renewable and sustainable energy reviews, 2014, 36: 91-106. DOI: 10.1016/j.rser.2014.04.047.
[12] DUNLOP A P. Furfural formation and behavior[J]. Industrial & engineering chemistry, 1948, 40(2): 204-209. DOI: 10.1021/ie50458a006.
[13] RASMUSSEN H, SØRENSEN H R, MEYER A S. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms[J]. Carbohydrate research, 2014, 385: 45-57. DOI: 10.1016/j.carres.2013.08.029.
[14] MODIG T, LIDÉN G, TAHERZADEH M J. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase[J]. Biochemical journal, 2002, 363(3): 769-776. DOI: 10.1042/bj3630769.
[15] BANERJEE N, BHATNAGAR R, VISWANATHAN L. Inhibition of glycolysis by furfural in Saccharomyces cerevisiae[J]. European journal of applied microbiology and biotechnology, 1981, 11(4): 226-228. DOI: 10.1007/BF00505872.
[16] ALLEN S A, CLARK W, MCCAFFERY J M, et al. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae[J]. Biotechnology for biofuels, 2010, 3: 2. DOI: 10.1186/1754-6834-3-2.
[17] KOENIG K, ANDREESEN J R. Xanthine dehydrogenase and 2-furoyl-coenzyme A dehydrogenase from pseudomonas putida Fu1: two molybdenum-containing dehydrogenases of novel structural composition[J]. Journal of bacteriology, 1990, 172(10): 5999-6009. DOI: 10.1128/jb.172.10.5999-6009.1990.
[18] 王晓凤, 张建, 辛秀娟, 等. 丝状真菌Amorphotheca resinae ZN1的糠醛降解代谢分析[J]. 生物工程学报, 2012, 28(9): 1070-1079.
[19] BOOPATHY R. Anaerobic biotransformation of furfural to furfuryl alcohol by a methanogenic archaebacterium[J]. International biodeterioration & biodegradation, 2009, 63(8): 1070-1072. DOI: 10.1016/j.ibiod.2009.09.011.
[20] NICHOLS N N, SHARMA L N, MOWERY R A, et al. Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate[J]. Enzyme and microbial technology, 2008, 42(7): 624-630. DOI: 10.1016/j.enzmictec.2008.02.008.
[21] TSUGE Y, HORI Y, KUDOU M, et al. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions[J]. Applied microbiology and biotechnology, 2014, 98(20): 8675-8683. DOI: 10.1007/s00253-014-5924-z.
[22] RAN H, ZHANG J, GAO Q Q, et al. Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1[J]. Biotechnology for biofuels, 2014, 7: 51. DOI: 10.1186/1754-6834-7-51.
[23] 杨雪雪. 酿酒酵母基因组中糠醛耐受相关基因的初步研究[D]. 天津: 天津大学, 2012.
[24] LIN F M, QIAO B, YUAN Y J. Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound[J]. Applied and environmental microbiology, 2009, 75(11): 3765-3776. DOI: 10.1128/AEM.02594-08.
[25] LIN F M, TAN Y, YUAN Y J. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural[J]. Proteomics, 2009, 9(24): 5471-5483. DOI: 10.1002/pmic.200900100.
[26] 丁明珠. 酵母对纤维素水解液中复合抑制剂耐受的系统分析与解耦[D]. 天津: 天津大学, 2011.
[27] MATSUDA F, SHIRAI T, ISHII J, et al. Regulation of central carbon metabolism in Saccharomyces cerevisiae by metabolic inhibitors[J]. Journal of bioscience and bioengineering, 2013, 116(1): 59-64. DOI: 10.1016/j.jbiosc.2013.01.018.
[28] ISHII J, YOSHIMURA K, HASUNUMA T, et al. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway[J]. Applied microbiology and biotechnology, 2013, 97(6): 2597-2607. DOI: 10.1007/s00253-012-4376-6.
[29] MA M G, WANG X, ZHANG X P, et al. Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion[J]. Applied microbiology and biotechnology, 2013, 97(18): 8411-8425. DOI: 10.1007/s00253-013-5110-8.
[30] 夏金梅, 林凤鸣, 元英进. 酵母对抑制剂耐受的系统分析[J]. 化学进展, 2007, 19(7/8): 1159-1163.
[31] LIU Z L. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates[J]. Applied microbiology and biotechnology, 2011, 90(3): 809-825. DOI: 10.1007/s00253-011-3167-9.
[32] 郝学才, 门珣, 张宜, 等. 酿酒酵母在纤维素乙醇生产中对毒性化合物的耐受机理研究进展[J]. 微生物学通报, 2012, 39(2): 254-263.
[33] 李炳志. 酵母对纤维素乙醇生产中的抑制剂响应的系统生物学研究[D]. 天津: 天津大学, 2010.
[34] 林凤鸣. 糠醛和苯酚对酵母作用定量蛋白质组学及脂肪酸模块构建[D]. 天津: 天津大学, 2011.
[35] ASK M, BETTIGA M, MAPELLI V, et al. The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae[J]. Biotechnology for biofuels, 2013, 6: 22. DOI: 10.1186/1754-6834-6-22.
[36] LV Y J, WANG X, MA Q, et al. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress[J]. Applied microbiology and biotechnology, 2014, 98(5): 2207-2221. DOI: 10.1007/s00253-014-5519-8.
[37] CLARKSON S M, HAMILTON-BREHM S D, GIANNONE R J, et al. A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E[J]. Biotechnology for biofuels, 2014, 7: 165. DOI: 10.1186/s13068-014-0165-z.
[38] WANG X, MILLER E N, YOMANO L P, et al. Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate[J]. Applied and environmental microbiology, 2011, 77(15): 5132-5140. DOI: 10.1128/AEM.05008-11.
[39] PARK S E, KOO H M, PARK Y K, et al. Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae[J]. Bioresource technology, 2011, 102(10): 6033-6038. DOI: 10.1016/j.biortech.2011.02.101.
[40] WANG X, MILLER E N, YOMANO L P, et al. Increased furan tolerance in Escherichia coli due to a Cryptic ucpA gene[J]. Applied and environmental microbiology, 2012, 78(7): 2452-2455. DOI: 10.1128/AEM.07783-11.
[41] KOOPMAN F, WIERCKX N, DE WINDE J H, et al. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14[J]. Proceedings of the national academy of sciences of the United States of America, 2010, 107(11): 4919-4924. DOI: 10.1073/pnas.0913039107.
[42] YING W H. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences[J]. Antioxidants & redox signaling, 2008, 10(2): 179-206. DOI: 10.1089/ars.2007.1672.
[43] ASK M, BETTIGA M, DURAISWAMY V R, et al. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase[J]. Biotechnology for biofuels, 2013, 6: 181. DOI: 10.1186/1754-6834-6-181.
/
〈 |
|
〉 |