欢迎访问《新能源进展》官方网站!今天是
论文

负极材料对LiNi0.5Mn1.5O4电池电化学性能的影响

  • 陈 鹏 ,
  • 任 宁 ,
  • 姬学敏 ,
  • 常林荣 ,
  • 邓吉阳 ,
  • 苏 锋 ,
  • 李洪涛
展开
  • 浙江超威创元实业有限公司,浙江 湖州 313100
陈 鹏(1988-),男,硕士,工程师,主要从事锂离子电池制作工艺优化与材料研究。

收稿日期: 2017-04-02

  修回日期: 2017-05-22

  网络出版日期: 2017-08-30

Effects of Anode Materials on the Electrochemical Performance of LiNi0.5Mn1.5O4 Battery

  • CHEN Peng ,
  • REN Ning ,
  • JI Xue-min ,
  • CHANG Lin-rong ,
  • DENG Ji-yang ,
  • SU Feng ,
  • LI Hong-tao
Expand
  • Zhejiang Chaowei Chuangyuan Shiye Co., Ltd., Huzhou 313100, China

Received date: 2017-04-02

  Revised date: 2017-05-22

  Online published: 2017-08-30

摘要

本文以尖晶石LiNi0.5Mn1.5O4(LNMO)为正极,分别以人造石墨(AG)和尖晶石型Li4Ti5O12(LTO)为负极,LiPF6-EC/DMC/EMC(1∶1∶1,V/V/V)为电解液,研究了不同负极材料对LNMO体系全电池性能的影响。结果表明,LNMO/LTO电池具有更好的倍率、低温和循环性能,其10 C放电容量保持率达71.59%,−20℃/0.5 C放电容量保持率为75.51%,1 C循环100周后容量保持率为89.19%。LNMO/LTO电池经过针刺测试后并未发生燃烧,而LNMO/AG电池则发生了燃烧,表明LNMO/LTO电池具有更好的安全性。

本文引用格式

陈 鹏 , 任 宁 , 姬学敏 , 常林荣 , 邓吉阳 , 苏 锋 , 李洪涛 . 负极材料对LiNi0.5Mn1.5O4电池电化学性能的影响[J]. 新能源进展, 2017 , 5(4) : 259 -265 . DOI: 10.3969/j.issn.2095-560X.2017.04.004

Abstract

The effects of different anode materials on the electrochemical performance of LiNi0.5Mn1.5O4 battery were studied, in which the cathode was LiNi0.5Mn1.5O4 (LNMO), the anode were artificial graphite (AG) and Li4Ti5O12 (LTO), and the electrolyte was LiPF6-EC/DMC/EMC (1:1:1, V/V/V). The results indicated that the discharge capacity retention rate of LNMO/LTO cell under −20oC were 71.59% and 75.51% at 10 C and 0.5 C respectively, and decreased to 89.19% after 100 cycles at 1 C. The LNMO/LTO cell displays better safety performance, which did not catch fire in the nail penetration test.

参考文献

[1] 陈鹏, 钱龙, 邓昌源, 等. 石墨负极材料形态对LiFePO4动力电池性能的影响[J]. 新能源进展, 2016, 34(3): 195-200. DOI: 10.3969/j.issn.2095-560X.2016.03. 005.
[2] BALOGUN M S, QIU W T, LUO Y, et al. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials[J]. Nano research, 2016, 9(10): 2823-2851. DOI 10.1007/s12274- 016-1171-1.
[3] LIM B B, MYUNG S T, YOON C S, et al. Comparative study of Ni-rich layered cathodes for rechargeable lithium batteries: Li [Ni0.85Co0.11Al0.04]O2 and Li [Ni0.84Co0.06Mn0.09Al0.01]O2 with two-step full concentration gradients[J]. ACS energy letters, 2016, 1(1): 283-289. DOI: 10.1021/acsenergylett.6b00150.
[4] MANTHIRAM A. Materials challenges and opportunities of lithium ion batteries[J]. The journal of physical chemistry letters, 2011, 2(3): 176-184. DOI: 10.1021/jz1015422.
[5] YANG L, RAVDEL B, LUCHT B L. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries[J]. Electrochemical and solid-state letters, 2010, 13(8): A95-A97. DOI: 10.1149/ 1.3428515.
[6] ZHANG Z C, HU L B, WU H M, et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy & environmental science, 2013, 6(6): 1806-1810. DOI: 10.1039/C3EE24414H.
[7] OHZUKU T, UEDA A, YAMAMOTO N, et al. Factor affecting the capacity retention of lithium-ion cells[J]. Journal of power sources, 1995, 54(1): 99-102. DOI: 10.1016/0378-7753(94)02047-7.
[8] ZHANG B, LIU Y S, HUANG Z D, et al. Urchin-like Li4Ti5O12-carbon nanofiber composites for high rate performance anodes in Li-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(24): 12133-12140. DOI: 10.1039/C2JM31308A.
[9] 刘君, 盘毅, 郑春满. 液相法制备锂离子电池用钛酸锂负极材料的研究进展[J]. 材料导报, 2012, 26(2): 144-148. DOI: 10.3969/j.issn.1005-023X.2012.03.028.
[10] XIANG H F, JIN Q Y, WANG R, et al. Nonflammable electrolyte for 3-V lithium-ion battery with spinel materials LiNi0.5Mn1.5O4 and Li4Ti5O12[J]. Journal of power sources, 2008, 179(1): 351-356. DOI: 10.1016/j.jpowsour. 2007.12.089.
[11] XIANG H F, ZHANG X, JIN Q Y, et al. Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells[J]. Journal of power sources, 2008, 183(1): 355-360. DOI: 10.1016/j.jpowsour.2008.04.091.
[12] LUO W B. Effect of morphology on the physical and electrochemical properties of the high-voltage spinel cathode LiMn1.5Ni0.5O4[J]. Journal of Alloys and Compounds, 2015, 636: 24-28. DOI: 10.1016/j.jallcom. 2015.02.163.
[13] WANG X Y, HAO H, LIU J L, et al. A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries[J]. Electrochimica acta, 2011, 56(11): 4065-4069. DOI: 10.1016/j.electacta.2010.12.108.
[14] HU L B, ZHANG Z C, AMINE K. Fluorinated electrolytes for Li-ion battery: an FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple[J]. Electrochemistry communications, 2013, 35: 76-79. DOI: 10.1016/j.elecom.2013.08.009.
[15] HAN J T, GOODENOUGH J B. 3-V full cell performance of anode framework TiNb2O7/Spinel LiNi0.5Mn1.5O4[J]. Chemistry of materials, 2011, 23(15): 3404-3407. DOI: DOI: 10.1021/cm201515g.
[16] LI S R, CHEN C H, XIA X, et al. The impact of electrolyte oxidation products in LiNi0.5Mn1.5O4/Li4Ti5O12 cells[J]. Journal of the electrochemical society, 2013, 160(9): A1524-A1528. DOI: 10.1149/2.051309jes.
[17] WU H M, BELHAROUAK I, DENG H, et al. Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life[J]. Journal of the electrochemical society, 2009, 156(12): A1047-A1050. DOI: 10.1149/1.3240197.
[18] OHZUKU T, UEDA A. Why transition metal (di) oxides are the most attractive materials for batteries[J]. Solid state ionics, 1994, 69(3/4): 201-211. DOI: 10.1016/0167- 2738(94)90410-3.
[19] ZAGHIB K, SIMONEAU M, ARMAND M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J]. Journal of power sources, 1999, 81-82: 300-305. DOI: 10.1016/ S0378-7753(99)00209-8.
[20] YAO X L, XIE S Q, CHEN C H, et al. Comparisons of graphite and spinel Li1.33Ti1.67O4 as anode materials for rechargeable lithium-ion batteries[J]. Electrochimica acta, 2005, 50(20): 4076-4081. DOI: 10.1016/j.electacta. 2005.01.034.
文章导航

/