欢迎访问《新能源进展》官方网站!今天是
论文

国内外餐厨垃圾现状及其处理措施

  • 程亚莉 ,
  • 毕桂灿 ,
  • 沃德芳 ,
  • 谢 君
展开
  • 华南农业大学林学与风景园林学院,广东省高校生物质能源重点实验室,农业部能源植物资源与利用重点实验室,广州 510642
程亚莉(1990-),女,硕士研究生,主要从事餐厨垃圾制备沼气方面的研究。

收稿日期: 2017-03-01

  修回日期: 2017-04-22

  网络出版日期: 2017-08-30

基金资助

国家科技支撑计划课题(2015BAD21B00);
广东省省级科技计划项目(2015B020215011);
广州市科技计划项目(201508020098)

Status Quo of Kitchen Waste and Its Treatment Measures at Home and Abroad

  • CHENG Ya-li ,
  • BI Gui-can ,
  • WO De-fang ,
  • XIE Jun
Expand
  • College of Forestry and Landscape Architecture, South China Agricultural University, Key Laboratory of Biomass Energy of Guangdong Higher Education Institutions, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, Guangzhou 510642, China

Received date: 2017-03-01

  Revised date: 2017-04-22

  Online published: 2017-08-30

摘要

随着城市的扩大、居民生活水平的提高,餐厨垃圾所带来的一系列问题也日益突出。餐厨垃圾的资源化利用与无害化处理富有市场潜力,愈来愈受到国内外学者的高度重视,各国均致力于新的垃圾处理方法的研究。惯用的焚烧、填埋、喂养畜禽等处理手段显然已经不符合当前的需求,对其进行饲料化处理、好氧堆肥以及厌氧制沼制氢等技术也正有取代之势。本文阐述了国内外餐厨垃圾的现状、处理所采用的技术,以及在餐厨垃圾处理过程中所遇到的管理和技术上的问题。通过借鉴国外先进的餐厨垃圾处理技术和处理措施,提出符合我国国情的餐厨垃圾处理对策和建议。

关键词: 餐厨垃圾; 现状; 问题; 措施

本文引用格式

程亚莉 , 毕桂灿 , 沃德芳 , 谢 君 . 国内外餐厨垃圾现状及其处理措施[J]. 新能源进展, 2017 , 5(4) : 266 -271 . DOI: 10.3969/j.issn.2095-560X.2017.04.005

Abstract

With the expansion of city and the improvement of people’s living standards, a range of problems caused by food waste become increasingly prominent. The resource utilization and harmless treatment of kitchen waste have huge market potential, which draw more and more attentions by domestic and foreign scholars, and all countries are committed to the research of new waste disposal methods. The commonly used incineration, landfill, feeding livestock, poultry and other means of treatment are clearly not in line with the current needs; feed treatment, aerobic composting and anaerobic hydrogen production are substitutions for the common ones. In this paper, the status quo and disposal technologies of kitchen waste were described, and problems encountered during the disposal process were also discussed. Treatment measures and some suggestions were put forward, which suitable for China’s national conditions by learning from foreign kitchen waste disposal technologies.

参考文献

[1] PAZERA A, SLEZAK R, KRZYSTEK L, et al. Biogas in Europe: food and beverage (FAB) waste potential for biogas production[J]. Energy & fuels, 2015, 29(7): 4011-4021. DOI: 10.1021/ef502812s.
[2] DE CLERCQ D, WEN Z G, FAN F, et al. Performance evaluation of restaurant food waste and biowaste to biogas pilot projects in China and implications for national policy[J]. Journal of environmental management, 2017, 189: 115-124. DOI: 10.1016/j.jenvman.2016.12.030.
[3] TANG J L, WANG X C, HU Y S, et al. Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula[J]. Bioresource technology, 2017, 224: 544-552. DOI: 10.1016/j.biortech. 2016.11.111.
[4] AGYEMAN F O, TAO W D. Anaerobic co-digestion of food waste and dairy manure: effects of food waste particle size and organic loading rate[J]. Journal of environmental management, 2014, 133: 268-274. DOI: 10.1016/j.jenvman.2013.12.016.
[5] SHAFIEE-JOOD M, CAI X M. Reducing food loss and waste to enhance food security and environmental sustainability[J]. Environmental science & technology, 2016, 50(16): 8432-8443. DOI: 10.1021/acs.est.6b01993.
[6] 中华人民共和国国家统计局. 2015中国统计年鉴[M]. 北京: 中国统计出版社, 2015: 1-198.
[7] 马中, 陆琼, 昌敦虎. “十三五”时期全国城镇生活垃圾处理资金需求分析[J]. 环境保护, 2016, 44(8): 42-46.
[8] 许飞. 生活垃圾: 最具潜力的“城市矿藏”[J]. 节能, 2016(5): 74.
[9] 毕珠洁, 邰俊, 许碧君. 中国餐厨垃圾管理现状研究[J]. 环境工程, 2016, 34(S1): 765-768.
[10] 沈超青. 广州市餐厨垃圾的资源化利用研究[D]. 广州: 华南理工大学, 2013: 1-103.
[11] WHITING A, AZAPAGIC A. Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion[J]. Energy, 2014, 70: 181-193. DOI: 10.1016/j.energy.2014.03.103.
[12] 张斌, 赵立杰. 国外家用餐厨垃圾处理机对周边环境影响分析[J]. 环境卫生工程, 2016, 24(5): 86-88. DOI: 10.3969/j.issn.1005-8206.2016.05.029.
[13] RAJAGOPAL R, BELLAVANCE D, RAHAMAN M S. Psychrophilic anaerobic digestion of semi-dry mixed municipal food waste: for North American context[J]. Process safety and environmental protection, 2017, 105: 101-108. DOI: 10.1016/j.psep.2016.10.014.
[14] 杨柏松, 熊文江, 朱巧银. 好氧堆肥技术研究[J]. 现代化农业, 2016(7): 57-59. DOI: 10.3969/j.issn.1001-0254. 2016.07.037.
[15] APPEL F, OSTERMEYER-WIETHAUP A, BALMANN A. Effects of the German renewable energy act on structural change in agriculture—the case of biogas[J]. Utilities policy, 2016, 41: 172-182. DOI: 10.1016/j.jup. 2016.02.013.
[16] BECKER A M JR, YU K, STADLER L B, et al. Co-management of domestic wastewater and food waste: a life cycle comparison of alternative food waste diversion strategies[J]. Bioresource technology, 2017, 223: 131-140. DOI: 10.1016/j.biortech.2016.10.031.
[17] 李晓浩. 餐厨垃圾处理现状与规范化处理对策分析[J]. 科技与企业, 2015(4): 133-134. DOI: 10.3969/j.issn. 1004-9207.2015.04.127.
[18] 魏小凤, 梁华杰, 王冠平. 餐厨垃圾产业链分析[J]. 环境卫生工程, 2015, 23(2): 15-18. DOI: 10.3969/j.issn. 1005-8206.2015.02.005.
[19] 中国物资再生协会. 2016年全国大、中城市固体废物污染环境防治年报[R]. 北京: 中国物资再生协会, 2016.
[20] 徐长勇, 宋薇, 赵树青, 等. 餐厨垃圾饲料化技术的同源性污染研究[J]. 环境卫生工程, 2011, 19(1): 9-10, 15. DOI: 10.3969/j.issn.1005-8206.2011.01.004.
[21] 靳秋颖, 王伯铎. 餐厨垃圾资源化技术进展及发展方向研究[J]. 环境工程, 2012, 30(S1): 327-330, 531.
[22] 李思敏, 樊春良. 政府使用科学应对风险的管理机制变迁——英国疯牛病事件与口蹄疫事件比较[J]. 科学学研究, 2015, 33(12): 1761-1769, 1860. DOI: 10.3969/ j.issn.1003-2053.2015.12.001.
[23] 继宁. 餐厨垃圾饲料化处理的风险及改进措施[N]. 中国食品报, 2014-02-18(007).
[24] BAHAR S, CIGGIN A S. A simple kinetic modeling approach for aerobic stabilization of real waste activated sludge[J]. Chemical engineering journal, 2016, 303: 194-201. DOI: 10.1016/j.cej.2016.05.149.
[25] 阚慧, 孙翔, 肖芸, 等. 基于好氧堆肥的餐厨垃圾肥料化利用污染分析及控制策略[J]. 环境工程, 2014, 32(1): 97-101. DOI: 10.13205/j.hjgc.201401024.
[26] SÁEZ J A, CLEMENTE R, BUSTAMANTE M Á, et al. Evaluation of the slurry management strategy and the integration of the composting technology in a pig farm—agronomical and environmental implications[J]. Journal of environmental management, 2017, 192: 56-67. DOI: 10.1016/j.jenvman.2017.01.040.
[27] TUYET N T, DAN N P, VU N C, et al. Laboratory-scale membrane up-concentration and co-anaerobic digestion for energy recovery from sewage and kitchen waste[J]. Water science & technology, 2016, 73(3): 597-606. DOI: 10.2166/wst.2015.535.
[28] WU B, WANG R, FANE A G. The roles of bacteriophages in membrane-based water and wastewater treatment processes: a review[J]. Water research, 2017, 110: 120-132. DOI: 10.1016/j.watres.2016.12.004.
[29] LI Y Y, JIN Y Y, LI J H, et al. Current situation and development of kitchen waste treatment in China[J]. Procedia environmental sciences, 2016, 31: 40-49. DOI: 10.1016/j.proenv.2016.02.006.
[30] SÁEZ-MARTÍNEZ F J, LEFEBVRE G, HERNÁNDEZ J J, et al. Drivers of sustainable cleaner production and sustainable energy options[J]. Journal of cleaner production, 2016, 138: 1-7. DOI: 10.1016/j.jclepro.2016.08.094.
[31] 闫雨, 阳艾利, 魏小凤. 我国餐厨垃圾处理技术及市场现状分析[J]. 环境卫生工程, 2017, 25(1): 17-20. DOI: 10.3969/j.issn.1005-8206.2017.01.004.
[32] GIROTTO F, ALIBARDI L, COSSU R, et al. Food waste generation and industrial uses: a review[J]. Waste management, 2015, 45: 32-41. DOI: 10.1016/j.wasman. 2015.06.008.
[33] 李锋, 顾卫兵, 白小龙, 等. 餐厨垃圾制备生物蛋白饲料的研究[J]. 粮食与饲料工业, 2013(12): 33-36. DOI: 10.7631/j.issn.1003-6202.2013.12.010.
[34] KIM H, KIM J, SHIN S G, et al. Continuous fermentation of food waste leachate for the production of volatile fatty acids and potential as a denitrification carbon source[J]. Bioresource technology, 2016, 207: 440-445. DOI: 10.1016/j.biortech.2016.02.063.
[35] YONG Z H, DONG Y L, ZHANG X, et al. Anaerobic co-digestion of food waste and straw for biogas production[J]. Renewable energy, 2015, 78: 527-530. DOI: 10.1016/j.renene.2015.01.033.
[36] LI W, LI Q, ZHENG L Y, et al. Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly[J]. Bioresource technology, 2015, 194: 276-282. DOI: 10.1016/j.biortech.2015.06.112.
[37] 郭汝阳, 陈云敏, 李育超, 等. 考虑pH值和挥发性脂肪酸影响的填埋城市固废厌氧降解模型[J]. 中国环境科学, 2015, 35(1): 147-156.
[38] 杜欢政, 矫旭东. 推动餐厨垃圾资源化建设生态文明先行省[J]. 浙江经济, 2015(21): 58-59. DOI: 10.3969/ j.issn.1005-1635.2015.21.032.
[39] DALAL E A, WEI Q, FRANCESCA P D, et al. Long-term bio-H2 and bio-CH4 production from food waste in a continuous two-stage system: Energy efficiency and conversion pathways[J]. Bioresource technology, 2017, 29(5):1-10. DOI:10.1016/j.biortech.2017.05.164
[40] GUO M X, SONG W P, BUHAIN J. Bioenergy and biofuels: history, status, and perspective[J]. Renewable and sustainable energy reviews, 2015, 42: 712-725. DOI: 10.1016/j.rser.2014.10.013.
[41] ZHAI N N, MAO C L, FENG Y Z, et al. Current status and future potential of energy derived from Chinese agricultural Land: a review[J]. Biomed research international, 2015, 2015: 824965. DOI: 10.1155/2015/ 824965.
[42] YUAN Y L, NOMURA H, TAKAHASHI Y, et al. Model of Chinese household kitchen waste separation behavior: a case study in Beijing City[J]. Sustainability, 2016, 8(10): 1083. DOI: 10.3390/su8101083.
[43] GRAHAM-ROWE E, JESSOP D C, SPARKS P, et al. Predicting household food waste reduction using an extended theory of planned behaviour[J]. Resources, conservation and recycling, 2015, 101: 194-202. DOI: 10.1016/j.resconrec.2015.05.020.
[44] HAN J H, LEE E. The effect of customer awareness of restaurants’ green practices on customer dining experiences[J]. International journal of tourism and hospitality research, 2016, 30(4): 57-67. DOI: 10.21298/ IJTHR.2016.04.30.4.57.
文章导航

/