欢迎访问《新能源进展》官方网站!今天是
论文

生物质成型燃料压缩机理的国内外研究现状

  • 李伟振 ,
  • 姜 洋 ,
  • 阴秀丽
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640
李伟振(1983-),男,硕士,助理研究员,主要从事生物质成型技术研究。E-mail:jangyang@ms.giec.ac.cn

收稿日期: 2017-05-15

  修回日期: 2017-06-28

  网络出版日期: 2017-08-30

基金资助

国家自然科学基金项目(51661145022)

Research Situation of Compression Mechanism of Biomass Molding Fuel at Home and Abroad

  • LI Wei-zhen ,
  • JIANG Yang ,
  • YIN Xiu-li
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China

Received date: 2017-05-15

  Revised date: 2017-06-28

  Online published: 2017-08-30

摘要

生物质成型燃料因具有清洁、可再生等特点,近年来发展迅速,对其成型机理的研究也日趋深入。本文主要介绍成型过程中粒子间“固体桥”结合方式、木质素热转变特性及黏结作用、原料组分、成型参数等方面的研究现状,提出混配成型技术、原料热转变特性、木质素结构及种类的影响、“固体桥”结构的构建条件及微观形貌、官能团和化学键的变化规律应是成型机理研究的主要方向,为生物质成型机理的深入研究提供参考。

本文引用格式

李伟振 , 姜 洋 , 阴秀丽 . 生物质成型燃料压缩机理的国内外研究现状[J]. 新能源进展, 2017 , 5(4) : 286 -293 . DOI: 10.3969/j.issn.2095-560X.2017.04.008

Abstract

Biomass molding fuel has developed rapidly in recent years due to clean and renewable characteristics, and the study of its compression mechanism is also increasingly intensive. In this review, the research situation of “solid bridge” structure between particles, lignin heat transformation characteristics and bonding function, raw material composition, processing parameters in the process of biomass molding were summarized. The mixed molding technology, raw material heat transformation characteristics, the influence of lignin structure and types, the building condition and morphology of “solid bridge”, the structure of functional groups and chemical bond were put forward as main directions for the compression mechanism study in the future. This work may shed some light on the further investigation of biomass molding fuel compression mechanism.

参考文献

[1] 贾敬敦, 马隆龙, 蒋丹平, 等. 生物质能源产业科技创新发展战略[M]. 北京: 化学工业出版社, 2014.
[2] 李伟振, 姜洋, 王功亮, 等. 生物质压缩成型机理研究进展[J]. 可再生能源, 2016, 34(10): 1525-1532.
[3] 胡建军, 雷廷宙, 沈胜强, 等. 秸秆颗粒冷态压缩成型过程的比能耗回归分析[J]. 可再生能源, 2010, 28(1):
29-32, 35. DOI:10.13941/j.cnki.21-1469/tk.2010.01.007.
[4] KALIYAN N, MOREY R V. Constitutive model for densification of corn stover and switchgrass[J]. Biosystems engineering, 2009, 104(1): 47-63. DOI: 10.1016/j. biosystemseng.2009.05.006.
[5] 焦安勇. 基于有限元模拟分析的生物质压缩成型机的研发[D]. 长春: 吉林大学, 2009.
[6] KALIYAN N, MOREY R V. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass[J]. Bioresource technology, 2010, 101(3): 1082-1090. DOI: 10.1016/j. biortech.2009.08.064.
[7] KONG L J, TIAN S H, HE C, et al. Effect of waste wrapping paper fiber as a “solid bridge” on physical characteristics of biomass pellets made from wood sawdust[J]. Applied energy, 2012, 98: 33-39. DOI: 10.1016/j.apenergy.2012.02.068.
[8] KONG L J, XIONG Y, LIU T, et al. Effect of fiber natures on the formation of “solid bridge” for preparing wood sawdust derived biomass pellet fuel[J]. Fuel processing technology, 2016, 144: 79-84. DOI: 10.1016/ j.fuproc.2015.12.001.
[9] STELTE W, HOLM J K, SANADI A R, et al. A study of bonding and failure mechanisms in fuel pellets from different biomass resources[J]. Biomass and bioenergy, 2011, 35(2): 910-918. DOI: 10.1016/j.biombioe.2010.11.003.
[10] LISPERGUER J, PEREZ P, URIZAR S. Structure and thermal properties of lignins: characterization by infrared spectroscopy and differential scanning calorimetry[J]. Journal of the chilean chemical society, 2009, 54(4): 460-463. DOI: 10.4067/S0717-97072009000400030.
[11] LIU Z J, JIANG Z H, CAI Z Y, et al. Dynamic mechanical thermal analysis of moso bamboo (phyllostachys heterocycla) at different moisture content[J]. Bioresources, 2012, 7(2): 1548-1557. DOI: 10.15376/biores.7.2.1548-1557.
[12] STELTE W, CLEMONS C, HOLM J K, et al. Thermal transitions of the amorphous polymers in wheat straw[J]. Industrial crops and products, 2011, 34(1): 1053-1056. DOI: 10.1016/j.indcrop.2011.03.014.
[13] STELTE W, CLEMONS C, HOLM J K, et al. Fuel pellets from wheat straw: the effect of lignin glass transition and surface waxes on pelletizing properties[J]. Bioenergy research, 2012, 5(2): 450-458.
[14] KALIYAN N, MOREY R V. Densification Characteristics of Corn Stover and Switchgrass[J]. Transactions of the ASABE, 2009, 52(3): 907-920. DOI: 10.13031/2013.27380.
[15] LI H, MCDONALD A G. Fractionation and characterization of industrial lignins[J]. Industrial crops and products, 2014, 62: 67-76. DOI: 10.1016/j.indcrop. 2014.08.013.
[16] POURSORKHABI V, MISRA M, MOHANTY A K. Extraction of lignin from a coproduct of the cellulosic ethanol industry and its thermal characterization[J]. BioResources, 2013, 8(4): 5083-5101. DOI: 10.15376/ biores.8.4.5083-5101.
[17] TUMULURU J S. Effect of process variables on the density and durability of the pellets made from high moisture corn stover[J]. Biosystems engineering, 2014, 119: 44-57. DOI: 10.1016/j.biosystemseng.2013.11.012.
[18] LEE S M, AHN B J, CHOI D H, et al. Effects of densification variables on the durability of wood pellets fabricated with Larix kaempferi C. and Liriodendron tulipifera L. sawdust[J]. Biomass and bioenergy, 2013, 48: 1-9. DOI: 10.1016/j.biombioe.2012.10.015.
[19] 袁振宏. 生物质能高效利用技术[M]. 北京: 化学工业出版社, 2015.
[20] 袁振宏, 吴创之, 马隆龙. 生物质能利用原理与技术[M]. 北京: 化学工业出版社, 2016.
[21] 陶用珍, 管映亭. 木质素的化学结构及其应用[J]. 纤维素科学与技术, 2003, 11(1): 42-55. DOI: 10.3969/j. issn.1004-8405.2003.01.009.
[22] MENON V, RAO M. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept[J]. Progress in energy and combustion science, 2012, 38(4): 522-550. DOI: 10.1016/j.pecs.2012.02.002.
[23] GUERRIERO G, HAUSMAN J F, STRAUSS J, et al. Lignocellulosic biomass: Biosynthesis, degradation, and industrial utilization[J]. Engineering in life sciences, 2016, 16(1): 1-16. DOI: 10.1002/elsc.201400196.
[24] 姜洋, 曲静霞, 郭军, 等. 生物质颗粒燃料成型条件的研究[J]. 可再生能源, 2006(5): 16-18. DOI: 10.3969/ j.issn.1671-5292.2006.05.006.
[25] MATTOS B D, LOURENÇON T V, SERRANO L, et al. Chemical modification of fast-growing eucalyptus wood[J]. Wood science and technology, 2015, 49(2): 273-288. DOI: 10.1007/s00226-014-0690-8.
[26] 蒋恩臣, 高忠志, 秦丽元, 等. 纤维素单独成型及燃烧特性研究[J]. 东北农业大学学报, 2016, 47(5): 106-112. DOI: 10.3969/j.issn.1005-9369.2016.05.015.
[27] 陈正宇. 生物质成型工艺参数研究[D]. 北京: 机械科学研究总院, 2013.
[28] VAN DAM J E G, VAN DEN OEVER M J A, TEUNISSEN W, et al. Process for production of high density/high performance binderless boards from whole coconut husk: Part 1: Lignin as intrinsic thermosetting binder resin[J]. Industrial crops and products, 2004, 19(3): 207-216. DOI: 10.1016/j.indcrop.2003.10.003.
[29] CASTELLANO J M, GÓMEZ M, FERNÁNDEZ M, et al. Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses[J]. Fuel, 2015, 139: 629-636. DOI: 10.1016/j. fuel.2014.09.033.
[30] LEHTIKANGAS P I. Quality properties of pelletised sawdust, logging residues and bark[J]. Biomass and bioenergy, 2001, 20(5): 351-360. DOI: 10.1016/S0961- 9534(00)00092-1.
[31] HOLM J K, STELTE W, POSSEL D, et al. Optimization of a multiparameter model for biomass pelletization to investigate temperature dependence and to facilitate fast testing of pelletization behavior[J]. Energy and fuels, 2011, 25(8): 3706-3711. DOI: 10.1021/ef2005628.
[32] BRADFIELD J, LEVI M P. Effect of species and wood to bark Ratio on pelleting of southern woods[J]. Forest products journal, 1984, 34(1): 61-63.
[33] WILSON T O. Factors affecting wood pellet durability[D]. Pennsylvania: Pennsylvania State University, 2010.
[34] 王慧. 基于生物质碾压成型机理的成型能耗影响因素研究[D]. 济南: 山东大学, 2011.
[35] THOMAS M, HUIJNEN P T H J, VAN VLIET T, et al. Effects of process conditions during expander processing and pelleting on starch modification and pellet quality of tapioca[J]. Journal of the science of food and agriculture, 1999, 79(11): 1481-1494. DOI: 10.1002/(SICI)1097- 0010(199908)79:11<1481::AID-JSFA390>3.0.CO;2-0.
[36] BRIGGS J L, MAIER D E, WATKINS B A, et al. Effect of ingredients and processing parameters on pellet quality[J]. Poultry science, 1999, 78(10): 1464-1471. DOI: 10.1093/ps/78.10.1464.
[37] TABIL L G. Binding and pelleting characteristics of alfalfa[D]. Saskatoon: University of Saskatchewan, 1996.
[38] S S, S M, X B, et al. Binderless pelletization of biomass[Z]. Tampa: 2005:17-20.
[39] WOOD J F. The functional properties of feed raw materials and their effect on the production and quality of feed pellets[J]. Animal feed science and technology, 1987, 18(1): 1-17. DOI: 10.1016/0377-8401(87)90025-3.
[40] Cavalcanti W. The effect of ingredient composition on the physical quality of pelleted feeds: a mixture experimental approach[D]. Manhattan: Kansas State University, 2004.
[41] 李美华.生物质燃料致密成型参数的研究[D]. 北京: 北京林业大学, 2005.
[42] 武凯, 施水娟, 彭斌彬, 等. 环模制粒挤压过程力学建模及影响因素分析[J]. 农业工程学报, 2010, 26(12): 142-147. DOI: 10.3969/j.issn.1002-6819.2010.12.024.
[43] STELTE W, HOLM J K, SANADI A R, et al. Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions[J]. Fuel, 2011, 90(11): 3285-3290. DOI: 10.1016/j.fuel.2011.05.011.
[44] MANI S, TABIL L G, SOKHANSANJ S. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses[J]. Biomass and bioenergy, 2006, 30(7): 648-654. DOI: 10.1016/j.biombioe.2005.01.004.
[45] 张静, 郭玉明, 贠慧星. 原料含水率对生物质固体燃料成型效果的影响[J]. 山西农业科学, 2012, 40(1): 65-67, 71.
[46] 景元琢, 董玉平, 盖超, 等. 生物质固化成型技术研究进展与展望[J]. 中国工程科学, 2011, 13(2): 72-77. DOI: 10.3969/j.issn.1009-1742.2011.02.013.
[47] LI Y D, LIU H. High-pressure densification of wood residues to form an upgraded fuel[J]. Biomass and bioenergy, 2000, 19(3): 177-186. DOI: 10.1016/S0961- 9534(00)00026-X.
[48] OBERNBERGER I, THEK G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour[J]. Biomass and bioenergy, 2004, 27(6): 653-669. DOI: 10.1016/j. biombioe.2003.07.006.
[49] KALIYAN N, MOREY R V. Factors affecting strength and durability of densified biomass products[J]. Biomass and bioenergy, 2009, 33(3): 337-359. DOI: 10.1016/j. biombioe.2008.08.005.
[50] HARUNA N Y, AFZALB M T. Effect of particle size on mechanical properties of pellets made from biomass blends[J]. Procedia engineering, 2016, 148: 93-99. DOI: 10.1016/j.proeng.2016.06.445.
[51] TUMULURU J S, WRIGHT C T, HESS J R, et al. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application[J]. Biofuels, bioproducts and biorefining, 2011, 5(6): 683-707. DOI: 10.1002/bbb.324.
[52] TUMULURU J S, TABIL L G, SONG Y, et al. Impact of process conditions on the density and durability of wheat, oat canola and barley straw briquettes[J]. Bioenergy research, 2015, 8(1): 388-401. DOI: 10.1007/s12155- 014-9527-4.
[53] LAM P Y, LAM P S, SOKHANSANJ S, et al. Effects of pelletization conditions on breaking strength and dimensional stability of Douglas fir pellet[J]. Fuel, 2014, 117: 1085-1092. DOI: 10.1016/j.fuel.2013.10.033.
[54] 王功亮, 姜洋, 李伟振, 等. 基于响应面法的玉米秸秆成型工艺优化[J]. 农业工程学报, 2016, 32(13): 223-227. DOI: 10.11975/j.issn.1002-6819.2016.13.032.
文章导航

/