针对江苏省江阴市某休闲会所商用建筑的土壤源热泵系统,采用TRNSYS软件模拟并分析了冬夏季供暖空调期土壤源热泵系统COP的变化。结果表明,在地埋管深度为100 m情况下,热泵系统的供热季节性能参数为3.31,供冷季节性能参数为3.37。对该地区的土壤源热泵系统采用层次分析法构建了评价体系,进行适宜性评价指标计算,并对土壤源热泵系统和常规冷热源系统的经济性和环境性进行了对比分析。与常规冷热源系统相比,土壤源热泵系统年运行费用是常规冷热源系统的75.6%,一次能源利用率高出13%,节约标煤量达1.71 t,温室气体减排量为4.47 t,全年能效比为2.74。土壤源热泵系统具有明显的节能、经济、环保优势,适宜性较好。
According to a ground coupled heat pump (GCHP) system for a commercial building in Jiangyin city, Jiangsu province, a model was built based on TRNSYS software to simulate and analysis its coefficient of performance (COP) under different working conditions. The results showed that the heating season performance factor (HSPF) of heat pump system was 3.31 in summer and the seasonal energy-efficiency ratio (SEER) was 3.37 in winter when the pipe buried depth was 100 meters. Analytic hierarchy process (AHP) was used to evaluation the suitability of GCHP system, and compared with the conventional system in terms of economic and environmental performance. It was found that the operating cost of GCHP system was 75.6% of the conventional system, the primary energy ratio was 13% higher, save coal amount was 1.71 tons, greenhouse gas reductions was 4.47 tons, and the all-yearly energy-efficiency ratio was 2.74. The GCHP system presents high suitability regarding its advantages in energy-saving, economic, and environment protection.
[1] ZENG H Y, DIAO N R, FANG Z H. Heat transfer analysis of boreholes in vertical ground heat exchangers[J]. International journal of heat and mass transfer, 2003, 46(23): 4467-4481. DOI: 10.1016/S0017-9310(03)00270-9.
[2] 曹馨雅. 地源热泵系统冷热负荷不平衡对土壤温度的影响[D]. 上海: 东华大学, 2012.
[3] 寇利. 上海某教学楼地源热泵系统性能测试分析[J]. 建筑节能, 2016, 44(8): 6-9, 18. DOI: 10.3969/j.issn. 1673-7237.2016.08.002.
[4] 汪洪军, 李新国, 赵军, 等. 地下耦合地源热泵机组冬季供热性能分析与实验研究[J]. 流体机械, 2003, 31(12): 51-54. DOI: 10.3969/j.issn.1005-0329.2003.12.016.
[5] 魏唐棣, 胡鸣明, 丁勇, 等. 地源热泵冬季供暖测试及传热模型[J]. 暖通空调, 2000, 30(1): 12-14. DOI: 10.3969/j.issn.1002-8501.2000.01.005.
[6] 门小静. 地源热泵空调系统的技术经济动态分析[D]. 武汉: 武汉理工大学, 2009. DOI: 10.7666/d.y1474726.
[7] 孟杉, 王立发, 江剑. 地埋管地源热泵空调系统经济性分析与设计优化[J]. 中国建设信息: 供热制冷, 2009(1): 34-36, 39.
[8] 李新国, 赵军. 低温地热运用热泵供热的技术经济性[J]. 太阳能学报, 2000, 21(4): 447-450. DOI: 10.3321/ j.issn:0254-0096.2000.04.019.
[9] 杨少刚. 基于TRNSYS地理管地源热泵变流量系统仿真研究[D]. 济南: 山东建筑大学, 2016.
[10] HYDEMAM M, GILLESPIE K L. Tools and techniques to calibrate electric chiller component models[J]. ASHRAE transactions, 2002, 108(1): 733-741.
[11] 徐伟. 地源热泵技术手册[M]. 北京: 中国建筑工业出版社, 2011: 69-72.
[12] 马武忠. 浅议电力折标系数及其对节能工作的影响[J]. 能源研究与利用, 2011(1): 32-33. DOI: 10.3969/j.issn. 1001-5523.2011.01.011.
[13] 邓雪, 李家铭, 曾浩健, 等. 层次分析法权重计算方法分析及其应用研究[J]. 数学的实践与认识, 2012, 42(7): 93-100. DOI: 10.3969/j.issn.1000-0984.2012.07.012.
[14] 中华人民共和国住房和城乡建设部. 民用建筑供暖通风与空气调节设计规范: GB 50736—2012[S]. 北京: 中国建筑工业出版社, 2012.
[15] 中华人民共和国住房和城乡建设部. 公共建筑节能设计标准: GB 50189—2015[S]. 北京: 中国建筑工业出版社, 2015.
[16] TRANE. WPWE冷热水型模块化水源热泵机组选型手册[Z]. 9.
[17] 唐凯, 张旭, 张恩泽, 等. 基于层次分析法的铁路客站地埋管地源热泵系统适宜性评价[J]. 暖通空调, 2013, 43(10): 110-115, 109.