欢迎访问《新能源进展》官方网站!今天是
论文

嵌段共聚物自组装制备低载铂量PEMFC电极纳米催化材料

  • 王志达 ,
  • 甘 源 ,
  • 侯 磊 ,
  • 闫常峰
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049
王志达(1979-),男,博士,副研究员,主要从事纳米材料研发和燃料电池系统设计。

收稿日期: 2017-09-06

  修回日期: 2017-09-28

  网络出版日期: 2017-10-30

基金资助

国家自然科学基金项目(51576201);
广东省自然科学基金项目(2015A030312007,2015A030313716);
广州市科技项目(2013B050800007);
中国科学院可再生能源重点实验室项目(Y609JK1001)

Fabrication of Low-Loading Pt Nanomaterials for PEMFC Electrocatalysts from Self-Assembly of Block Copolymer

  • WANG Zhi-da ,
  • GAN Yuan ,
  • HOU Lei ,
  • YAN Chang-feng
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2017-09-06

  Revised date: 2017-09-28

  Online published: 2017-10-30

摘要

质子交换膜燃料电池(PEMFC)催化电极材料的制备方法是当今能源科学研究的热点之一。其中,嵌段共聚物自组装技术因操作简单和结构可控而倍受关注。本文以PS-b-P4VP嵌段共聚物自组装形成的有机纳米膜结构为模版,探讨了铂(Pt)纳米阵列的制备,并测试了其催化效率。结果表明,本方法制备的Pt阵列均匀有序,电化学活性面积为131.97 m2/g,而Pt消耗仅为商业化标准的6%左右,从而在保持催化活性的同时,提高了Pt的利用率和催化效率。

本文引用格式

王志达 , 甘 源 , 侯 磊 , 闫常峰 . 嵌段共聚物自组装制备低载铂量PEMFC电极纳米催化材料[J]. 新能源进展, 2017 , 5(5) : 341 -345 . DOI: 10.3969/j.issn.2095-560X.2017.05.003

Abstract

Recently, researches have been increasingly devoted to the nanomaterials of proton exchange membrane fuel cell (PEMFC) electrocatalysts for their unique nanoscale surface effects. As one of the most important methodologies of material preparations, self-assembly of block copolymers (BCs) stands out with its inherent ability to form complex nanostructures. Herein, a simple but robust fabrication of Pt nanoparticles (NPs) assisted by self-assembly of PS-b-P4VP BC template on silicon wafers was introduced. The as-prepared Pt electrocatalyst showed high order and high EASA value of 131.97 m2/g with a low loading of about 6wt% of the standard commercial PEMFC Pt-cost. This work supplied a precise control for the increase of catalytic ability and Pt utilization.

参考文献

[1] 衣宝廉. 燃料电池——原理•技术•应用[M]. 北京: 化学工业出版社, 2003: 1-4.
[2] CHO A. Renewable energy. Hydrogen from ethanol goes portable[J]. Science, 2004, 303(5660): 942-943. DOI: 10.1126/science.303.5660.942b.
[3] BONACCORSO F, COLOMBO L, YU G H, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501. DOI: 10.1126/science.1246501.
[4] MATSUZAKI Y, TACHIKAWA Y, SOMEKAWA T, et al. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells[J]. Scientific reports, 2015, 5: 12640. DOI: 10.1038/srep12640.
[5] STAMENKOVIC V R, FOWLER B, MUN B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497. DOI: 10.1126/science.1135941.
[6] YANG Z H, NAKASHIMA N. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum[J]. Scientific reports, 2015, 5: 12236. DOI: 10.1038/srep12236.
[7] 张敏, 李经建, 潘牧, 等. Pt纳米线阵列的氧还原催化性能[J]. 物理化学学报, 2011, 27(7): 1685-1688.
[8] 孙世刚, 陈胜利. 电催化[M]. 北京: 化学工业出版社, 2013: 1-5.
[9] HOLTON O T, STEVENSON J W. The role of platinum in proton exchange membrane fuel cells[J]. Platinum metals review, 2013, 57(4): 259-271. DOI: 10.1595/ 147106713X671222.
[10] WANG Y J, ZHAO N N, FANG B Z, et al. Carbon- supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity[J]. Chemical reviews, 2015, 115(9): 3433-3467. DOI: 10.1021/cr500519c.
[11] RUBENSTEIN M, CORNEJO A, NAGPAL R. Programmable self-assembly in a thousand-robot swarm[J]. Science, 2014, 345(6198): 795-799. DOI: 10.1126/science. 1254295.
[12] 刘锋, 王诚, 张剑波, 等. 质子交换膜燃料电池有序化膜电极[J]. 化学进展, 2014, 26(11): 1763-1771.
[13] HOSHINO H, ITO T, DONKAI N, et al. Lyotropic mesophase formation in PVA/imogolite mixture[J]. Polymer bulletin, 1992, 29(3/4): 453-460. DOI: 10.1007/ BF00944844.
[14] FULLAM S, COTTEL D, RENSMO H, et al. Carbon nanotube templated self-assembly and thermal processing of gold nanowires[J]. Advanced materials, 2000, 12(19): 1430-1432. DOI: 10.1002/1521-4095(200010)12:19<1430:: AID-ADMA1430>3.0.CO;2-8.
[15] CHOI H C, SHIM M, BANGSARUNTIP S, et al. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes[J]. Journal of American chemical society, 2002, 124(31): 9058-9059. DOI: 10.1021/ja026824t.
[16] MINKO S, KIRIY A, GORODYSKA G, et al. Mineralization of single flexible polyelectrolyte molecules[J]. Journal of American chemical society, 2002, 124(34): 10192-10197. DOI: 10.1021/ja026784t.
[17] ULRICH R, CHESNE A, TEMPLIN M, et al. Nano- objects with controlled shape, size, and composition from block copolymer mesophases[J]. Advances materials, 1999, 11(2): 141-146. DOI: 10.1002/(SICI)1521- 4095(199902)11:2<141::AID-ADMA141>3.0.CO;2-R.
[18] AJAYAN P M, STAPHAN O, COLLIEX C, et al. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite[J]. Science, 1994, 265(5176): 1212-1214. DOI: 10.1126/science.265.5176. 1212.
[19] BRAUN E, EICHEN Y, SIVAN U, et al. DNA- templated assembly and electrode attachment of a conducting silver wire[J]. Nature, 1998, 391(6669): 775-778. DOI: 10.1038/35826.
[20] HUANG M H, CHOUDREY A, YANG P D. Ag nanowire formation within mesoporous silica[J]. Chemical communications, 2000(12): 1063-1064. DOI: 10.1039/B002549F.
[21] WANG Z D, GAN Y, YAN C F, et al. Mechanism study of reversible transition between self-assembly and disassembly of ABC triblock copolymer micelles[J]. Polymer, 2016, 90: 276-281. DOI: 10.1016/j.polymer. 2016.03.036.
[22] FAHMI A M, BRAUN H G, STAMM M. Fabrication of metallized nanowires from self-assembled diblock copolymer templates[J]. Advanced materials, 2003, 15(14): 1201-1204. DOI: 10.1002/adma.200304995.
[23] MASSEY J A, WINNIK M A, MANNERS I, et al. Fabrication of oriented nanoscopic ceramic lines from cylindrical micelles of an organometallic polyferrocene block copolymer[J]. Journal of American chemical society, 2001, 123(13): 3147-3148. DOI: 10.1021/ja003174p.
[24] FÖRSTER S, KONRAD M. From self-organizing polymers to Nano- and biomaterials[J]. Journal of materials chemistry, 2003, 13(11): 2671-2688. DOI: 10.1039/B307512P.
[25] WANG Z D, GUO C Q, GAN Y, et al. Patterning of Au nanoparticles via secondary phase-separation of large-sized compound micelles of amphiphilic block copolymer[J]. Materials letters, 2017, 194, 135-137. DOI: 10.1016/j. matlet.2017.02.036.
[26] MIKKELSEN K, CASSIDY B, HOFSTETTER N, et al. Block copolymer templated synthesis of core−shell PtAu bimetallic nanocatalysts for the methanol oxidation reaction[J]. Chemistry of materials, 2014, 26(24): 6928-6940. DOI: 10.1021/cm5026798.
[27] ZHU Z W, TAO F, ZHENG F, et al. Formation of nanometer-sized surface platinum oxide clusters on a stepped Pt(557) single crystal surface induced by oxygen: a high-pressure STM and ambient-pressure xps study[J]. Nano letters, 2012, 12(3): 1491-1497. DOI: 10.1021/nl204242s.
[28] QIU J D, WANG G C, LIANG R P, et al. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells[J]. The journal of physical chemistry C, 2011, 115(31): 15639-15645. DOI: 10.1021/jp200580u.
文章导航

/