本文利用溶胶?凝胶法制备不同Pt掺杂量的纳米TiO2光催化剂(Pt/TiO2),使用X射线衍射仪、透射电镜、紫外可见漫反射光谱和光致发光光谱对其进行表征,并在紫外光与可见光下进行了CO2光催化还原实验。实验结果表明,Pt离子掺杂TiO2纳米催化剂颗粒排列紧密,大小分布均匀,粒径为20 nm左右。Pt/TiO2催化剂在紫外光及可见光下均表现出较高的光催化活性。紫外光下,Pt掺杂量为0.2wt%的催化剂活性最高,其甲烷产率可达66 μmol gcat−1?h−1;可见光下0.3wt% Pt/TiO2活性最优,这是由于铂离子掺杂能有效地将TiO2光响应范围拓展至可见光区,并可抑制光生电子空穴对的复合。
Platinum-ion-doped titania (Pt/TiO2) nanoparticles with varied doping concentration were synthesized by sol-gel method, and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis) and photoluminescence (PL) spectroscopy. The photocatalytic reduction experiment of CO2 was carried out under UV/visible light irradiation. Results showed that the Pt/TiO2 nanoparticles were arranged closely and uniform-sized, the mean diameter was about 20 nm. CH4 was found to be the primary product for Pt/TiO2 catalysts. The 0.2wt% Pt/TiO2 catalyst showed the best photocatalytic activity with a maximum CH4 production rate of 66 μmol gcat−1?h−1 under UV light irradiation. The activity of 0.3wt%Pt/TiO2 catalyst was highest under visible light irradiation. This is attributed to the doping of Pt ion can effectively extend the spectral response from UV to visible area and slow the recombination of photogenerated electron-hole pairs.
[1] 郑楚光. 温室效应及其控制对策[M]. 北京: 中国电力出版社, 2001: 202.
[2] 熊卓, 罗颖, 赵永椿, 等. 同时暴露{101}与{001}面的TiO2纳米晶体光催化还原CO2实验研究[J]. 工程热物理学报, 2016, 37(9): 2027-2032.
[3] INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277(5698): 637-638. DOI: 10.1038/277637a0.
[4] WU J C S, WU T H, CHU T, et al. Application of optical-fiber photoreactor for CO2 photocatalytic reduction[J]. Topics in catalysis, 2008, 47(3/4): 131-136. DOI: 10.1007/s11244-007-9022-7.
[5] HEPERNMA O A, TENNAKONE K, DISSANAYAKE W D D P. Photocatalytic behaviour of metal doped titanium dioxide. studies on the photoxchemical synthesis of ammonia on Mg/TiO2 catalyst systems[J]. Applied catalysis, 1990, 62(1): 11-15. DOI: 10.1016/ S0166-9834(00)82233-2.
[6] 黄永生, 冯海波. TiO2光催化剂的改性研究[J]. 舰船防化, 2009(3): 12-14.
[7] VARGHESE O K, PAULOSE M, LATEMPA T J, et al. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels[J]. Nano letters, 2009, 9(2): 731-737. DOI: 10.1021/nl803258p.
[8] ISHITANI O, INOUE C, SUZUKI Y, et al. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2[J]. Journal of photochemistry and photobiology a: chemistry, 1993, 72(3): 269-271. DOI: 10.1016/1010-6030(93) 80023-3.
[9] ZHANG Q H, HAN W D, HONG Y J, et al. Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst[J]. Catalysis today, 2009, 148(3/4): 335-340. DOI: 10.1016/j.cattod.2009.07.081.
[10] WANG W N, AN W J, RAMALINGAM B, et al. Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals[J]. Journal of the American chemical society, 2012, 134(27): 11276-11281.
[11] XIE T F, WANG D J, ZHU L J, et al. Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2[J]. Materials chemistry and physics, 2001, 70(1): 103-106. DOI: 10.1016/S0254-0584(00)00475-2.
[12] LI Y, WANG W N, ZHAN Z L, et al. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts[J]. Applied catalysis b: environmental, 2010, 100(1/2): 386-392. DOI: 10.1016/ j.apcatb.2010.08.015.
[13] TSENG I H, WU J C S. Chemical states of metal-loaded Titania in the photoreduction of CO2[J]. Catalysis today, 2004, 97(2/3): 113-119. DOI: 10.1016/j.cattod.2004.03.063.
[14] SLAMET, NASUTION H W, PURNAMA E, et al. Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method[J]. Catalysis communications, 2005, 6(5): 313-319. DOI: 10.1016/j.catcom.2005.01.011.
[15] XIONG Z, WANG H B, XU N Y, et al. Photocatalytic reduction of CO2 on Pt2+–Pt0/TiO2 nanoparticles under UV/Vis light irradiation: a combination of Pt2+ doping and Pt nanoparticles deposition[J]. International journal of hydrogen energy, 2015, 40(32): 10049-10062. DOI: 10.1016/j.ijhydene.2015.06.075.
[16] FANG B Z, CHAUDHARI N K, KIM M S, et al. Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell[J]. Journal of the American chemical society, 2009, 131(42): 15330-15338. DOI: 10.1021/ja905749e.
[17] KUBACKA A, BACHILLER-BAEZA B, COLÓN G, et al. Doping level effect on sunlight-driven W, N-co-doped TiO2-anatase photo-catalysts for aromatic hydrocarbon partial oxidation[J]. Applied catalysis b: environmental, 2010, 93(3/4): 274-281. DOI: 10.1016/j.apcatb.2009.09.039.
[18] YU J G, WANG G H, CHENG B, et al. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders[J]. Applied catalysis b: environmental, 2007, 69(3/4): 171-180. DOI: 10.1016/j.apcatb.2006.06.022.
[19] CHOI J, PARK H, HOFFMANN M R. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2[J]. Journal of physical and chemistry c, 2010, 114(2): 783-792. DOI: 10.1021/jp908088x.
[20] WU J, LIU Q J, GAO P, et al. Influence of praseodymium and nitrogen co-doping on the photocatalytic activity of TiO2[J]. Materials research bulletin, 2011, 46(11): 1997-2003. DOI: 10.1016/j. materresbull.2011.07.012.
[21] WANG C, SHI H S, LI Y. Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts[J]. Applied surface science, 2012, 258(10): 4328-4333. DOI: 10.1016/j.apsusc.2011.12.108.