[1] COLLIER JR R K. Desiccant properties and their effect on cooling system performance[J]. ASHRAE transactions, 1989, 95(1): 823-827.
[2] GOLUBOVIC M N, HETTIARACHCHI H D M, WOREK W M. Sorption properties for different types of molecular sieve and their influence on optimum dehumidification performance of desiccant wheels[J]. International journal of heat and mass transfer, 2006, 49(17/18): 2802-2809. DOI: 10.1016/j.ijheatmasstransfer. 2006.03.012.
[3] ENTERIA N, YOSHINO H, SATAKE A, et al. Experimental heat and mass transfer of the separated and coupled rotating desiccant wheel and heat wheel[J]. Experimental thermal and fluid science, 2010, 34(5): 603-615. DOI: 10.1016/j.expthermflusci.2009.12.001.
[4] LA D, DAI Y J, LI Y, et al. Technical development of rotary desiccant dehumidification and air conditioning: a review[J]. Renewable and sustainable energy reviews, 2010, 14(1): 130-147. DOI: 10.1016/j.rser.2009.07.016.
[5] YUAN Y P, ZHANG H Q, YANG F, et al. Inorganic composite sorbents for water vapor sorption: a research progress[J]. Renewable and sustainable energy reviews, 2016, 54: 761-776. DOI: 10.1016/j.rser.2015.10.069.
[6] ZHENG X, GE T S, WANG R Z. Recent progress on desiccant materials for solid desiccant cooling systems[J]. Energy, 2014, 74: 280-294. DOI: 10.1016/ j.energy.2014.07.027.
[7] ARISTOV Y I. New family of solid sorbents for adsorptive cooling: material scientist approach[J]. Journal of engineering thermophysics, 2007, 16(2): 63-72. DOI: 10.1134/S1810232807020026.
[8] WANG L W, WANG R Z, OLIVEIRA R G. A review on adsorption working pairs for refrigeration[J]. Renewable and sustainable energy reviews, 2009, 13(3): 518-534. DOI: 10.1016/j.rser.2007.12.002.
[9] HUANG H Y, HE Z H, YUAN H R, et al. Effect of adsorbent diameter on the performance of adsorption refrigeration[J]. Chinese journal of chemical engineering, 2014, 22(5): 602-606. DOI: 10.1016/S1004-9541(14) 60074-4.
[10] ZHENG X, GE T S, WANG R Z, et al. Performance study of composite silica gels with different pore sizes and different impregnating hygroscopic salts[J]. Chemical engineering science, 2014, 120: 1-9. DOI: 10.1016/j. ces.2014.08.047.
[11] ZHENG X, GE T S, JIANG Y, et al. Experimental study on silica gel-LiCl composite desiccants for desiccant coated heat exchanger[J]. International journal of refrigeration, 2015, 51: 24-32. DOI: 10.1016/j.ijrefrig.2014.11.015.
[12] SIMONOVA I A, FRENI A, RESTUCCIA G, et al. Water sorption on composite “silica modified by calcium nitrate”[J]. Microporous and mesoporous materials, 2009, 122(1/3): 223-228. DOI: 10.1016/j.micromeso. 2009.02.034.
[13] GORDEEVA L G, RESTUCCIA G, CACCIOLA G, et al. Selective water sorbents for multiple applications, 5. LiBr confined in mesopores of silica gel: sorption properties[J]. Reaction kinetics and catalysis letters, 1998, 63(1): 81-88. DOI: 10.1007/BF02475434.
[14] ARISTOV Y I, RESTUCCIA G, CACCIOLA G, et al. A family of new working materials for solid sorption air conditioning systems[J]. Applied thermal engineering, 2002, 22(2): 191-204. DOI: 10.1016/S1359-4311(01) 00072-2.
[15] SUKHYY K M, BELYANOVSKAYA E A, KOZLOV Y N, et al. Structure and adsorption properties of the composites ‘silica gel-sodium sulphate’, obtained by sol-gel method[J]. Applied thermal engineering, 2014, 64(1/2): 408-412. DOI: 10.1016/j.applthermaleng.2013. 12.013.
[16] ARISTOV Y I, SAPIENZA A, OVOSHCHNIKOV D, et al. Reallocation of adsorption and desorption times for optimisation of cooling cycles[J]. International journal of refrigeration, 2012, 35(3): 525-531. DOI: 10.1016/j. ijrefrig.2010.07.019.
[17] FRENI A, SAPIENZA A, GLAZNEV I S, et al. Experimental testing of a lab-scale adsorption chiller using a novel selective water sorbent “silica modified by calcium nitrate”[J]. International journal of refrigeration, 2012, 35(3): 518-524. DOI: 10.1016/j.ijrefrig.2010.05.015.
[18] GORDEEVA L G, GREKOVA A D, KRIEGER T A, et al. Adsorption properties of composite materials (LiCl+ LiBr)/silica[J]. Microporous and mesoporous materials, 2009, 126(3): 262-267. DOI: 10.1016/j.micromeso.2009. 06.015.
[19] GORDEEVA L, GREKOVA A, KRIEGER T, et al. Composites “binary salts in porous matrix” for adsorption heat transformation[J]. Applied thermal engineering, 2013, 50(2): 1633-1638. DOI: 10.1016/j.applthermaleng. 2011.07.040.
[20] TSO C Y, CHAO C Y H. Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems[J]. International journal of refrigeration, 2012, 35(6): 1626-1638. DOI: 10.1016/j.ijrefrig.2012.05.007.
[21] YU N, WANG R Z, LU Z S, et al. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage[J]. Chemical engineering science, 2014, 111: 73-84. DOI: 10.1016/j.ces.2014.02.012.
[22] TASHIRO Y, KUBO M, KATSUMI Y, et al. Assessment of adsorption-desorption characteristics of adsorbents for adsorptive desiccant cooling system[J]. Journal of materials science, 2004, 39(4): 1315-1319. DOI: 10.1023/B:JMSC.0000013937.11959.6a.
[23] CHAN K C, CHAO C Y H, SZE-TO G N, et al. Performance predictions for a new zeolite 13X/CaCl2 composite adsorbent for adsorption cooling systems[J]. International journal of heat and mass transfer, 2012, 55(11/12): 3214-3224. DOI: 10.1016/j.ijheatmasstransfer. 2012.02.054.
[24] CHAN K C, CHAO C Y H, BAHRAMI M. Heat and mass transfer characteristics of a zeolite 13X/CaCl2 Composite adsorbent in adsorption cooling systems[C]// Proceedings of the ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. San Diego, California, USA: American Society of Mechanical Engineers, 2012: 49-58. DOI: 10.1115/ES2012-91246.
[25] CORTÉS F B, CHEJNE F, CARRASCO-MARÍN F, et al. Water sorption on silica- and zeolite-supported hygroscopic salts for cooling system applications[J]. Energy conversion and management, 2012, 53(1): 219-223. DOI: 10.1016/j.enconman.2011.09.001.
[26] 赖艳华, 吴涛, 赵琳妍, 等. 低温吸湿复合吸附剂的制备及吸湿性能[J]. 化工学报, 2015, 66(S1): 154-158. DOI: 10.11949/j.issn.0438-1157.20150297.
[27] 赵惠忠, 唐祥虎, 严昊鑫, 等. 基于13X沸石分子筛/MgCl2的复合吸附剂性能实验研究[J]. 制冷学报, 2016, 37(5): 50-56. DOI: 10.3969/j.issn.0253-4339.2016. 05.050.
[28] TOKAREV M, GORDEEVA L, ROMANNIKOV V, et al. New composite sorbent CaCl2 in mesopores for sorption cooling/heating[J]. International journal of thermal sciences, 2002, 41(5): 470-474. DOI: 10.1016/ S1290-0729(02)01339-X.
[29] JI J G, WANG R Z, LI L X. New composite adsorbent for solar-driven fresh water production from the atmosphere[J]. Desalination, 2007, 212(1/3): 176-182. DOI: 10.1016/j.desal.2006.10.008.
[30] ZHENG X, GE T S, HU L M, et al. Development and characterization of mesoporous silicate-LiCL composite desiccants for solid desiccant cooling systems[J]. Industrial & engineering chemistry research, 2015, 54(11): 2966-2973. DOI: 10.1021/ie504948j.
[31] PONOMARENKO I V, GLAZNEV I S, GUBAR A V, et al. Synthesis and water sorption properties of a new composite “CaCl2 confined into SBA-15 pores”[J]. Microporous and mesoporous materials, 2010, 129(1/2): 243-250. DOI: 10.1016/j.micromeso.2009.09.023.
[32] ZHENG X, WANG R Z, GE T S, et al. Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems[J]. Energy, 2015, 93: 88-94. DOI: 10.1016/j.energy.2015.09.024.
[33] AL-MOUSAWI F N, AL-DADAH R, MAHMOUD S. Low grade heat driven adsorption system for cooling and power generation using advanced adsorbent materials[J]. Energy conversion and management, 2016, 126: 373-384. DOI: 10.1016/j.enconman.2016.08.012.
[34] GIRNIK I S, ARISTOV Y I. Dynamic optimization of adsorptive chillers: the “AQSOA™-FAM-Z02-Water” working pair[J]. Energy, 2016, 106: 13-22. DOI: 10.1016/j.energy.2016.03.036.
[35] SHARAFIAN A, MEHR S M N, HUTTEMA W, et al. Effects of different adsorber bed designs on in-situ water uptake rate measurements of AQSOA FAM-Z02 for vehicle air conditioning applications[J]. Applied thermal engineering, 2016, 98: 568-574. DOI: 10.1016/j.applthermaleng.2015.12.060.
[36] NG E P, MINTOVA S. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity[J]. Microporous and mesoporous materials, 2008, 114(1/3): 1-26. DOI: 10.1016/j.micromeso.2007. 12.022.
[37] GORDEEVA L G, RESTUCCIA G, FRENI A, et al. Water sorption on composites “LiBr in a porous carbon”[J]. Fuel processing technology, 2002, 79(3): 225-231. DOI: 10.1016/S0378-3820(02)00186-8.
[38] YE H, YUAN Z, LI S M, et al. Activated carbon fiber cloth and CaCl2 composite sorbents for a water vapor sorption cooling system[J]. Applied thermal engineering, 2014, 62(2): 690-696. DOI: 10.1016/j.applthermaleng. 2013.10.035.
[39] WANG J Y, WANG R Z, WANG L W. Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents[J]. Applied thermal engineering, 2016, 100: 893-901. DOI: 10.1016/j.applthermaleng. 2016.02.100.
[40] ZHANG H Q, YUAN Y P, YANG F, et al. Inorganic composite adsorbent CaCl2/MWNT for water vapor adsorption[J]. RSC advances, 2015, 5(48): 38630-38639. DOI: 10.1039/C5RA05860K.
[41] HUANG H Y, OIKE T, WATANABE F, et al. Development research on composite adsorbents applied in adsorption heat pump[J]. Applied thermal engineering, 2010, 30(10): 1193-1198. DOI: 10.1016/j.applthermaleng. 2010.01.036.
[42] THORUWA T F N, JOHNSTONE C M, GRANT A D, et al. Novel, low cost CaCl2 based desiccants for solar crop drying applications[J]. Renewable energy, 2000, 19(4): 513-520. DOI: 10.1016/S0960-1481(99)00072-5.
[43] 郑旭, 王如竹, 葛天舒. 硅藻-氯化锂复合除湿剂制备及吸附性能[J]. 化工学报, 2016, 67(7): 2874-2879. DOI: 10.11949/j.issn.0438-1157.20160048.
[44] CHEN H J, CUI Q, TANG Y, et al. Attapulgite based LiCl composite adsorbents for cooling and air conditioning applications[J]. Applied thermal engineering, 2008, 28(17/18): 2187-2193. DOI: 10.1016/j.applthermaleng. 2007.12.015.
[45] NAKABAYASHI S, NAGANO K, NAKAMURA M, et al. Improvement of water vapor adsorption ability of natural mesoporous material by impregnating with chloride salts for development of a new desiccant filter[J]. Adsorption, 2011, 17(4): 675-686. DOI: 10.1007/s10450-011-9363-1.
[46] LEE J, LEE D Y. Sorption characteristics of a novel polymeric desiccant[J]. International journal of refrigeration, 2012, 35(7): 1940-1949. DOI: 10.1016/j. ijrefrig.2012.07.009.
[47] CHEN C H, HSU C Y, CHEN C C, et al. Silica gel polymer composite desiccants for air conditioning systems[J]. Energy and buildings, 2015, 101: 122-132. DOI: 10.1016/j.enbuild.2015.05.009.
[48] CHEN C H, HSU C Y, CHEN C C, et al. Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems[J]. Energy, 2016, 94: 87-99. DOI: 10.1016/j.energy.2015.10.139.
[49] CHEN C H, HUANG P C, YANG T H, et al. Polymer/alumina composite desiccant combined with periodic total heat exchangers for air-conditioning systems[J]. International journal of refrigeration, 2016, 67: 10-21. DOI: 10.1016/j.ijrefrig.2016.01.003.
[50] 刘川文, 黄红军, 李志广, 等. 改性聚乙烯醇-氯化钙共混物的吸湿性能研究[J]. 科学技术与工程, 2007, 7(6): 1169-1171. DOI: 10.3969/j.issn.1671-1815.2007. 06.056.
[51] 何贤培. 淀粉基复合凝胶干燥剂的制备与性能分析[J]. 化学工程师, 2016, 30(10): 63-64. DOI: 10.16247/j.cnki. 23-1171/tq.20161063.
[52] 张春晓, 张万喜, 刘健, 等. 有机高分子吸湿材料的研究进展[J]. 现代化工, 2008, 28(10): 14-17. DOI: 10.3321/ j.issn:0253-4320.2008.10.004.
[53] BATTEN S R, CHAMPNESS N R, CHEN X M, et al. Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013)[J]. Pure and applied chemistry, 2013, 85(8): 1715-1724. DOI: 10.1351/PAC-REC-12-11-20.
[54] ROWSELL J L C, YAGHI O M. Metal-organic frameworks: a new class of porous materials[J]. Microporous and mesoporous materials, 2004, 73(1/2): 3-14. DOI: 10.1016/j.micromeso.2004.03.034.
[55] MEEK S T, GREATHOUSE J A, ALLENDORF M D. Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials[J]. Advanced materials, 2011, 23(2): 249-267. DOI: 10.1002/adma.201002854.
[56] YAN J, YU Y, MA C, et al. Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101 (Cr)@ GO with super-high capacity[J]. Applied thermal engineering, 2015, 84: 118-125. DOI: 10.1016/j. applthermaleng.2015.03.040.
[57] KÜSGENS P, ROSE M, SENKOVSKA I, et al. Characterization of metal-organic frameworks by water adsorption[J]. Microporous and mesoporous materials, 2009, 120(3): 325-330. DOI: 10.1016/j.micromeso.2008. 11.020.
[58] WICKENHEISSER M, JEREMIAS F, HENNINGER S K, et al. Grafting of hydrophilic ethylene glycols or ethylenediamine on coordinatively unsaturated metal sites in MIL-100(Cr) for improved water adsorption characteristics[J]. Inorganica chimica acta, 2013, 407: 145-152. DOI: 10.1016/j.ica.2013.07.024.
[59] EHRENMANN J, HENNINGER S K, JANIAK C. Water adsorption characteristics of MIL-101 for heat- transformation applications of MOFs[J]. European journal of inorganic chemistry, 2011, 2011(4): 471-474. DOI: 10.1002/ejic.201001156.
[60] ELSAYED E, RAYA A D, MAHMOUD S, et al. CPO-27(Ni), aluminium fumarate and MIL-101(Cr) MOF materials for adsorption water desalination[J]. Desalination, 2017, 406: 25-36. DOI: 10.1016/j.desal. 2016.07.030.