为减缓垃圾焚烧炉受热面的腐蚀,以广东惠州光大博罗垃圾发电厂为研究对象,往炉膛中添加氢氧化钙,取外管壁腐蚀层以及积灰,用扫描电镜进行微观分析,并分别用能谱仪和X射线荧光光谱仪对积灰进行局部以及全元素组成分析。结果表明,添加Ca(OH)2能有效吸收烟气中含Cl、S等酸性气体,S在水冷壁腐蚀层的含量由25.33%降至8.17%,硫腐蚀显著减缓;而Na、K等碱金属在水冷壁腐蚀层的含量分别由0.89%、0.44%上升至4.81%、3.11%,一定程度上加速了碱金属腐蚀。水冷壁积灰中Fe的检出量由8.42%下降至4.54%,综合酸性气体腐蚀与碱金属腐蚀两方面的作用,添加Ca(OH)2能有效缓解焚烧炉高温腐蚀。
欧阳小平
,
徐海峰
,
周金鹏
,
赖建华
,
吴海泓
,
马晓茜
,
余昭胜
,
陈丽梅
,
林 延
. 氢氧化钙对垃圾焚烧炉受热面积灰腐蚀的影响[J]. 新能源进展, 2017
, 5(6)
: 417
-425
.
DOI: 10.3969/j.issn.2095-560X.2017.06.002
In order to slow down the corrosion of the heating surface in the incineration furnace, the Everbright Environment Energy’s (Boluo) power plant in Huizhou, Guangdong province, was selected for the study. During the study, calcium hydroxide was added to the furnace, the corrosion layer and deposition were analyzed by Scanning Electron Microscopy, and the analysis of the local and all-element components of the deposition was carried out by the Energy Dispersive Spectrometer and the X-ray Fluorescence Spectrometer. Results showed that, the acid gases which contain Cl and S were absorbed by calcium hydroxide effectively. S content in the tube layer decreased from 25.33% to 8.17%, and sulfur corrosion was greatly slowed down. Alkali metal content such as Na and K increased from 0.89% and 0.44% to 4.81% and 3.11%, and the alkali metal corrosion was accelerated to a certain extent. The amount of Fe in the deposition of the tube decreased from 8.42% to 4.54%, which proved that the high temperature corrosion was effectively alleviated by adding calcium hydroxide on considering both acid gas corrosion and alkali metal corrosion.
[1] 蒋旭光, 王忠民. 垃圾焚烧烟气高温腐蚀机理的研究[J]. 电站系统工程, 2002, 18(2): 53-55. DOI: 10.3969/j.issn.1005-006X.2002.02.022.
[2] 祝建中, 陈烈强, 甘轲. 垃圾焚烧气氛中碱金属氯化物的腐蚀机理[J]. 华南理工大学学报(自然科学版), 2005, 33(3): 78-82. DOI: 10.3321/j.issn:1000-565X.2005. 03.018.
[3] 左军, 陈恩鉴, 林伯川, 等. 垃圾焚烧炉过热器高温腐蚀与防护的研究概况[J]. 锅炉技术, 2002, 33(3): 26-32. DOI: 10.3969/j.issn.1672-4763.2002.03.007.
[4] 谢光辉. 垃圾焚烧烟气脱酸工艺[J]. 中国环保产业, 2016(6): 26-28, 31. DOI: 10.3969/j.issn.1006-5377.2016. 06.007.
[5] 陈晓波. 垃圾焚烧烟气脱酸影响因素简述[J]. 建筑工程技术与设计, 2016(36): 2281. DOI: 10.3969/j.issn. 2095-6630.2016.36.230.
[6] 王凡, 王红梅, 张凡, 等. 半干半湿法烟气脱硫技术的原理及应用研究[J]. 安全与环境学报, 2004, 4(1): 26-28, 55. DOI: 10.3969/j.issn.1009-6094.2004.01.006.
[7] 杨玉环, 张媛媛. 钙硫比对CFB锅炉炉内脱硫效率的影响研究[J]. 应用能源技术, 2013(6): 28-32. DOI: 10.3969/j.issn.1009-3230.2013.06.009.
[8] WANG H, GUO S, YANG L, et al. Impacts of water vapor and AAEMs on limestone desulfurization during coal combustion in a bench-scale fluidized-bed combustor[J]. Fuel processing technology, 2017, 155: 134-143. DOI: 10.1016/j.fuproc.2016.05.010.
[9] 张焕亨. 李坑垃圾焚烧高温腐蚀试验研究[D]. 广州: 华南理工大学, 2013.
[10] 潘葱英. 垃圾焚烧炉内过热器区HCl高温腐蚀研究[D]. 杭州: 浙江大学, 2004.
[11] YAN Z Q, WANG Z A, WANG X F, et al. Kinetic model for calcium sulfate decomposition at high temperature[J]. Transactions of nonferrous metals society of China, 2015, 25(10): 3490-3497. DOI: 10.1016/ S1003-6326(15)63986-3.
[12] JA'BAZ I, CHEN J, ETSCHMANN B, et al. Effect of silica additive on the high-temperature fireside tube corrosion during the air-firing and oxy-firing of lignite (Xinjiang coal)–characteristics of bulk and cross-sectional surfaces for the tubes[J]. Fuel, 2017, 187: 68-83. DOI: 10.1016/j.fuel.2016.09.040.
[13] BRYERS R W. Examination of fouling of convective heat transfer surface by calcium and sodium using micro-analytical techniques[C]//Joint Power Generation Conference. Portland, OR, USA: American Society of Mechanical Engineers, 1986.
[14] 吴超义. 锅炉水冷壁高温腐蚀特性试验研究[D]. 杭州: 浙江大学, 2003.
[15] 李莉, 宋景慧. 垃圾焚烧电厂过热器管腐蚀泄漏机制分析[J]. 华电技术, 2017, 39(4): 24-27. DOI: 10.3969/ j.issn.1674-1951.2017.04.007.
[16] 赖志燚. 城市生活垃圾在O2/N2及O2/CO2气氛下的燃烧特性及焚烧炉水冷壁腐蚀研究[D]. 广州: 华南理工大学, 2013.
[17] 许明磊. 垃圾焚烧过程受热面积灰烧结特性实验研究[D]. 杭州: 浙江大学, 2007.
[18] 敖翔. 超(超)临界锅炉螺旋式上升水冷壁的高温腐蚀研究[D]. 杭州: 浙江大学, 2017.