欢迎访问《新能源进展》官方网站!今天是
论文

干热岩热能的热管开采方案及其技术可行性研究

  • 蒋方明 ,
  • 黄文博 ,
  • 曹文炅
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;                        
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049

收稿日期: 2017-07-29

  修回日期: 2017-11-04

  网络出版日期: 2017-12-29

基金资助

广东省自然科学基金-重大基础研究培育项目(2014A030308001);
国家自然科学基金-广东省联合基金项目(U1401232)

Mining Hot Dry Rock Geothermal Energy by Heat Pipe: Conceptual Design and Technical Feasibility Study

  • JIANG Fang-ming ,
  • HUANG Wen-bo ,
  • CAO Wen-jiong
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;                                   
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;                                 
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2017-07-29

  Revised date: 2017-11-04

  Online published: 2017-12-29

摘要

常规增强型地热系统(EGS)通过流体工质在裂隙热储中的循环流动来开采岩石中的热能,需要消耗大量的泵功,存在工质流失、管道腐蚀结垢等问题,而且常常由于裂隙网络的井下连通性不够造成EGS建设的失败。为避免这些问题,本文首次提出采用热管来提取干热岩热能的技术方案。为强化热管蒸发段与周围岩石的传热,特别提出在目标热储内充填CO2流体工质、借助其自然对流强化干热岩热能开采,进一步通过数值仿真及理论分析探讨该方案的技术可行性。数值模型考虑了超临界CO2的变物性,研究了其在目标热储内的自然对流对热管采热的影响,模拟并比较了在不同条件下热管的采热速率。结果表明,调低热管的采热温度可以显著提高热管采热速率,并且当热储渗透率大于1 × 10−9 m2时CO2的自然对流作用会明显提升热管采热速率。本文还比较了热管加热段水平布置与竖直热管的性能差异,发现前者可以提高1.5 ~ 2.3倍的采热速率。另外,对该系统中水工质重力热管的携带极限以及管内蒸汽流阻进行了分析探讨。

本文引用格式

蒋方明 , 黄文博 , 曹文炅 . 干热岩热能的热管开采方案及其技术可行性研究[J]. 新能源进展, 2017 , 5(6) : 426 -434 . DOI: 10.3969/j.issn.2095-560X.2017.06.003

Abstract

In conventional enhanced geothermal systems (EGS), heat is extracted from earth-deep by circulating fluid through fractured-rock heat reservoir. This process generally consumes large amount of pump work, and has problems like fluid loss and pipe scaling etc. Moreover, it often encounters failure due to the bad downhole connectivity of fracture network in the reservoir. To circumvent these problems, conceptual design about mining heat from earth-deep hot dry rock by heat pipe is presented for the first time. Hoping to have strong natural convection of CO2 in the reservoir to enhance the heat transfer between rock and heat pipe, filling the reservoir with CO2 fluid is specially proposed. Further, numerical modeling and theoretical analysis are performed to explore the technical feasibility of the new HDR heat extraction concept. The numerical model considers CO2 of temperature- and pressure- dependent thermophysical properties. Effects of natural convection of CO2 in the target reservoir on the heat extraction by heat pipe are studied; heat extraction rates by different conditioned heat pipes are compared. The results indicate that lowering the working temperature of heat pipe can significantly increase the heat extraction rate and notable increase at the heat extraction rate will be caused by the natural convection of CO2 if the reservoir permeability is higher than 1 × 10−9 m2. It is found from numerical results also that an increase of 1.5 ~ 3 times at the heat extraction rate can be achieved if the heating section of the heat pipe is arranged horizontally compared to all vertically aligned heat pipe. Additionally, the carrying limit and steam flow resistance for water thermosyphon are analyzed numerically under realistic geothermal conditions.

参考文献

[1] TESTER J W, ANDERSON B J, BATCHELOR A S, et al. The future of geothermal energy: Impact of enhanced geothermal systems (EGS) on the United States in the 21st century[J]. Massachusetts Institute of Technology, 2006, 209. DOI: 10.2172/911903.
[2] 刘明言. 地热流体的腐蚀与结垢控制现状[J]. 新能源进展, 2015, 3(1): 38-46. DOI: 10.3969/j.issn.2095-560X. 2015.01.007.
[3] 贺玉龙, 杨立中, 熊春梅. 地热开发过程中的主要工程环境问题[J]. 环境与可持续发展, 2008(5): 42-44. DOI: 10.3969/j.issn.1673-288X.2008.05.018.
[4] 马永昌, 张宪峰. 热管技术的原理、应用与发展[J].变频器世界, 2009(7): 70-75.
[5] 张军, 张辉, 张红, 等. 地热热管融雪系统应用研究[J]. 太阳能学报, 2011, 32(12): 1822-1826.
[6] 王锐, 董重成, 吴辉敏. 热管用于建筑供暖的初步研究[J]. 低温建筑技术, 2014, 36(2): 35-37. DOI: 10.3969/j.issn.1001-6864.2014.02.013.
[7] 张玉丰, 吴晓东, 李伟超. 重力热管井筒伴热方式可行性分析[J]. 石油勘探与开发, 2007, 34(4): 483-487. DOI: 10.3321/j.issn:1000-0747.2007.04.018.
[8] 李伟超, 吴晓东, 师俊峰, 等. 重力热管伴热改善稠油井井筒传热损失的研究[J]. 西南石油大学学报, 2008, 29(6): 75-79. DOI: 10.3863/j.issn.1674-5086.2007.06.018.
[9] 李巍, 王铁强. 辽河油田欢127块重力热管现场试验效果分析[J]. 科学技术与工程, 2011, 11(10): 2310-2312. DOI: 10.3969/j.issn.1671-1815.2011.10.034.
[10] PRUESS K. Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4): 351-367. DOI: 10.1016/j.geothermics.2006.08.002.
[11] 刘刚. 重力热管的工质选择[J]. 制冷与空调, 2006(1): 41-43, 12. DOI: 10.3969/j.issn.1671-6612.2006.01.010.
[12] JIANG F M, LUO L, CHEN J L. A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems[J]. International communications in heat and mass transfer, 2013, 41: 57-62. DOI: 10.1016/j.icheatmasstransfer.2012.11.003.
[13] JIANG F M, CHEN J L, HUANG W B, et al. A three-dimensional transient model for EGS subsurface thermo-hydraulic process[J]. Energy, 2014, 72: 300-310. DOI: 10.1016/j.energy.2014.05.038.
[14] CAO W J, HUANG W B, JIANG F M. Numerical study on variable thermophysical properties of heat transfer fluid affecting EGS heat extraction[J]. International journal of heat and mass transfer, 2016, 92: 1205-1217. DOI: 10.1016/j.ijheatmasstransfer.2015.09.081.
[15] ROSTAMIAN H, LOTFOLLAHI M N. Modified redlich-kwong and Peng-Robinson equations of state for solubility calculation of solid compounds in supercritical carbon dioxide[J]. Indian journal of science & technology, 2016, 9(16). DOI: 10.17485/ijst/2016/v9i16/ 52344.
[16] SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 k at pressures up to 800 MPa[J]. Journal of physical and chemical reference data, 1996, 25(6): 1509-1596. DOI: 10.1063/1.555991.
[17] HEIDARYAN E, HATAMI T, RAHIMI M, et al. Viscosity of pure carbon dioxide at supercritical region: Measurement and correlation approach[J]. The journal of supercritical fluids, 2011, 56(2): 144-151. DOI: 10.1016/j.supflu.2010.12.006.
[18] JARRAHIAN A, HEIDARYAN E. A novel correlation approach to estimate thermal conductivity of pure carbon dioxide in the supercritical region[J]. The journal of supercritical fluids, 2012, 64: 39-45. DOI: 1016/j.supflu. 2012.02.008.
[19] BEZRODNYI M K. Upper limit of maximum heat transfer capacity of evaporative thermosyphons[J]. Therm Eng, 1978, 25(8): 37-40.
[20] 朱华, 屠传经. 校核重力式热管携带极限的方法[J]. 能源工程, 1986(6): 43-45, 40. DOI: 10.16189/j.cnki. nygc.1986.06.020.
[21] PAN Y. Condensation heat transfer characteristics and concept of sub-flooding limit in a two-phase closed thermosyphon[J]. International communications in heat and mass transfer, 2001, 28(3): 311-322. DOI: 10.1016/S0735-1933(01)00237-8.
[22] 焦波, 邱利民, 张洋. 重力热管冷凝段携带极限的理论研究[J]. 工程热物理学报, 2008, 29(6): 1028-1030. DOI: 10.3321/j.issn:0253-231X.2008.06.033.
[23] FAGHRI A. Heat pipe science and technology[M]. Washington, DC: Taylor & Francis, 1995.
[24] 汤传义. 水的表面张力与温度的关系[J]. 安庆师范学院学报(自然科学版), 2000, 6(1): 73-74.
[25] 杨世铭, 陶文铨. 传热学[M]. 3版. 北京: 高等教育出版社, 1998: 106.
文章导航

/