在研发和设计H2/空气质子交换膜燃料电池时,如何促进扩散介质及气流通道内液态水的传输是需要考虑的主要问题之一。本文运用FLUENT软件流体体积(VOF) 模块模拟了燃料电池气体扩散层表面液滴的形成、脱落及输运行为。液滴受气体剪切力、粘滞力和表面张力的共同影响,对不同的壁面浸润角和不同的气体剪切力,呈现出复杂的液滴动力学行为。考察了通道气体流速和扩散层表面浸润力对液滴行为的影响。结果表明,增大扩散层表面浸润角或入口气流速度均可以促进扩散层表面液滴的跃离,前者对液滴跃离的促进作用更大;扩散层表面的凹坑可以使液滴的跃离提前。此外,还发现阳极气流通道内液滴一旦形成,将更可能附着在扩散层表面而不易被气流带走。
How to enhance liquid water transport or removal in gas diffusion layers and gas flow channels is an important problem needs to be carefully considered in the research and design of advanced H2/Air PEMFC (proton exchange membrane fuel cell). In the present work, the FLUENT volume of fluid (VOF) module is employed to simulate and study the dynamic behavior of liquid water droplet formation, detachment and transportation on or from the surface of gas diffusion layer. Water droplets show complex dynamic behavior, which is a result of the combined effect of shearing forces, viscous forces and surface tension. Water droplet detaches from the surface of gas diffusion layer more easily if the contact angle is larger or the gas flow velocity is higher. The effect of contact angle on water droplet dynamic behavior is greater than the gas velocity. A downstream notch on the surface of gas diffusion layer can facilitate the detachment of water droplet. In addition, water droplet dynamic behavior on the anode side is studied as well. It is found that once water droplet forms on the surface of gas diffusion layer, it more possibly sticks on the surface and is hard to be blown away by the H2 flow.
[1] JIANG F M, WANG C Y. Numerical modeling of liquid water motion in a polymer electrolyte fuel cell[J]. International journal of hydrogen energy, 2014, 39(2): 942-950. DOI: 10.1016/j.ijhydene.2013.10.113.
[2] BEN AMARA M E A, BEN NASRALLAH S. Numerical simulation of droplet dynamics in a proton exchange membrane (PEMFC) fuel cell micro-channel[J]. International journal of hydrogen energy, 2015, 40(2): 1333-1342. DOI: 10.1016/j.ijhydene.2014.09.077.
[3] GARCÍA-SALABERRI P A, SÁNCHEZ D G, BOILLAT P, et al. Hydration and dehydration cycles in polymer electrolyte fuel cells operated with wet anode and dry cathode feed: a neutron imaging and modeling study[J]. Journal of power sources, 2017, 359: 634-655. DOI: 10.1016/j.jpowsour.2017.03.155.
[4] CHEN W, JIANG F M. Impact of PTFE content and distribution on liquid–gas flow in PEMFC carbon paper gas distribution layer: 3D lattice Boltzmann simulations[J]. International journal of hydrogen energy, 2016, 41(20): 8550-8562. DOI: 10.1016/j.ijhydene.2016.02.159.
[5] OUS T, ARCOUMANIS C. The formation of water droplets in an air-breathing PEMFC[J]. International journal of hydrogen energy, 2009, 34(8): 3476-3487. DOI: 10.1016/j.ijhydene.2009.02.037.
[6] KIMBALL E, WHITAKER T, KEVREKIDIS Y G, et al. Drops, slugs, and flooding in polymer electrolyte membrane fuel cells[J]. AIChE journal, 2008, 54(5): 1313-1332. DOI: 10.1002/aic.11464.
[7] CHEAH M J, KEVREKIDIS I G, BENZIGER J B. Water slug to drop and film transitions in gas-flow channels[J]. Langmuir, 2013, 29(48): 15122-15136. DOI: 10.1021/ la403057k.
[8] CHO S C, WANG Y, CHEN K S. Droplet dynamics in a polymer electrolyte fuel cell gas flow channel: forces, deformation, and detachment. I: theoretical and numerical analyses[J]. Journal of power sources, 2012, 206: 119-128. DOI: 10.1016/j.jpowsour.2012.01.057.
[9] SERGI J M, KANDLIKAR S G. Quantification and characterization of water coverage in PEMFC gas channels using simultaneous anode and cathode visualization and image processing[J]. International journal of hydrogen energy, 2011, 36(19): 12381-12392. DOI: 10.1016/j.ijhydene. 2011.06.092.
[10] QIN C Z, HASSANIZADEH S M, RENSINK D. Numerical studies on liquid water flooding in gas channels used in polymer electrolyte fuel cells[J]. Chemical engineering science, 2012, 82: 223-231. DOI: 10.1016/j.ces.2012.07.049.
[11] SELLMAN J T, SANTAMARIA A D. Ex-situ probing of PEFC liquid droplet dynamics in the presence of vibration[J]. International journal of hydrogen energy, 2017, 42(17): 12551-12558. DOI: 10.1016/j.ijhydene. 2017.02.140.
[12] UTAKA Y, KORESAWA R. Performance enhancement of polymer electrolyte fuel cells by combining liquid removal mechanisms of a gas diffusion layer with wettability distribution and a gas channel with microgrooves[J]. Journal of power sources, 2016, 323: 37-43. DOI: 10.1016/j.jpowsour.2016.05.036.
[13] HEIDARY H, KERMANI M J, PRASAD A K, et al. Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells[J]. International journal of hydrogen energy, 2017, 42(4): 2265-2277. DOI: 10.1016/j.ijhydene.2016.10.076.
[14] FERREIRA R B, FALCÃO D S, OLIVEIRA V B, et al. Numerical simulations of two-phase flow in an anode gas channel of a proton exchange membrane fuel cell[J]. Energy, 2015, 82: 619-628. DOI: 10.1016/j.energy.2015. 01.071.
[15] GOLPAYGAN A, ASHGRIZ N. Multiphase flow model to study channel flow dynamics of PEM fuel cells: deformation and detachment of water droplets[J]. International journal of computational fluid dynamics, 2008, 22(1/2): 85-95. DOI: 10.1080/10618560701733707.
[16] BAO N, ZHOU Y B, JIAO K, et al. Effect of gas diffusion layer deformation on liquid water transport in proton exchange membrane fuel cell[J]. Engineering applications of computational fluid mechanics, 2014, 8(1): 26-43. DOI: 10.1080/19942060.2014.11015495.
[17] CARTON J G, LAWLOR V, OLABI A G, et al. Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels[J]. Energy, 2012, 39(1): 63-73. DOI: 10.1016/j.energy.2011.10.023.
[18] PARK J W, JIAO K, LI X G. Numerical investigations on liquid water removal from the porous gas diffusion layer by reactant flow[J]. Applied energy, 2010, 87(7): 2180-2186. DOI: 10.1016/j.apenergy.2009.11.021.
[19] THEODORAKAKOS A, OUS T, GAVAISES M, et al. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells[J]. Journal of colloid and interface science, 2006, 300(2): 673-687. DOI: 10.1016/j.jcis.2006.04.021.
[20] MANCUSI E, FONTANA É, DE SOUZA A A U, et al. Numerical study of two-phase flow patterns in the gas channel of PEM fuel cells with tapered flow field design[J]. International journal of hydrogen energy, 2014, 39(5): 2261-2273. DOI: 10.1016/j.ijhydene.2013. 11.106.
[21] SONG M, KIM H Y, KIM K. Effects of hydrophilic/hydrophobic properties of gas flow channels on liquid water transport in a serpentine polymer electrolyte membrane fuel cell[J]. International journal of hydrogen energy, 2014, 39(34): 19714-19721. DOI: 10.1016/j.ijhydene.2014.09.168.
[22] LORENZINI-GUTIERREZ D, KANDLIKAR S G, HERNANDEZ-GUERRERO A, et al. Residence time of water film and slug flow features in fuel cell gas channels and their effect on instantaneous area coverage ratio[J]. Journal of power sources, 2015, 279: 567-580. DOI: 10.1016/j.jpowsour.2015.01.041.
[23] CHEN L, HE Y L, TAO W Q. Effects of surface microstructures of gas diffusion layer on water droplet dynamic behaviors in a micro gas channel of proton exchange membrane fuel cells[J]. International journal of heat and mass transfer, 2013, 60: 252-262. DOI: 10.1016/ j.ijheatmasstransfer.2012.11.024.
[24] KUMBUR E C, SHARP K V, MENCH M M. Liquid droplet behavior and instability in a polymer electrolyte fuel cell flow channel[J]. Journal of power sources, 2006, 161(1): 333-345. DOI: 10.1016/j.jpowsour.2006.04.093.
[25] HAO L, CHENG P. Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel[J]. Journal of power sources, 2009, 190(2): 435-446. DOI: 10.1016/j.jpowsour.2009.01.029.