近年来,随着IT行业的快速发展,通信基站空调系统能耗急剧增大。与传统蒸汽压缩式空调系统相比,自然冷源降温技术耗电量小、节能效果显著。本文针对在济南某基站采用自然冷源替代传统蒸汽压缩式空调用于机房降温的可行性进行了分析。结果表明,测试周期内,在4℃温差的自控启动条件下,降温主机的平均能效比可以达到12.78左右,且随着环境温度的降低,室内外温差、主机供冷率和阶段平均能效比均呈增大趋势。此外,通过对测试数据的回归拟合,给出了主机供冷率与室内外温差以及环境温度的经验关联式。实验结果表明,自然冷源降温是一种值得推广的机房节能技术。
In recent years, with the rapid development of IT industry, the energy consumption of air conditioning system in telecommunication base stations has increased dramatically. Compared with the traditional vapor compression air conditioning system, the free cooling technology has advantages in relative smaller electricity consumption and remarkable energy-saving. In this paper, the feasibility of using free cooling unit instead of traditional vapor compression air conditioning systems for room cooling in one of base stations is analyzed in Jinan. The results show that, in the testing period, under the condition of automatic temperature control at 4oC, the average EER of the cooling unit can reach about 12.78; with ambient temperature decreasing, the indoor and outdoor temperature difference, cooling unit power output and stage average EER are increased. In addition, through the test data regression, a fitting correlation between the cooling unit power output, indoor and outdoor temperature difference and ambient temperature is also given. The experimental results show the free cooling technology is worthy of promotion in the field of base station energy saving.
[1] EBRAHIMI K, JONES G F, FLEISCHER A S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities[J]. Renewable and sustainable energy reviews, 2014, 31: 622-638. DOI: 10.1016/j.rser.2013. 12.007.
[2] C114中国通信网. 中国前9月新增基站68万座 总数已达407.7万[DB/OL]. (2015-10-22). http://tech.hexun.com/2015-10-22/180027874.html.
[3] 钱存存. 华南地区办公建筑IDC机房空调系统优化设计与节能改造方法研究[D]. 重庆: 重庆大学, 2015: 1-6.
[4] ORÓ E, DEPOORTER V, PFLUGRADT N, et al. Overview of direct air free cooling and thermal energy storage potential energy savings in data centres[J]. Applied thermal engineering, 2015, 85: 100-110. DOI: 10.1016/j.applthermaleng.2015.03.001.
[5] ZHANG H N, SHAO S Q, XU H B, et al. Free cooling of data centers: A review[J]. Renewable and sustainable energy reviews, 2014, 35: 171-182. DOI: 10.1016/j.rser.2014.04.017.
[6] NI J C, BAI X L. A review of air conditioning energy performance in data centers[J]. Renewable and sustainable energy reviews, 2017, 67: 625-640. DOI: 10.1016/j.rser.2016.09.050.
[7] GAO T Y, DAVID M, GEER J, et al. Experimental and numerical dynamic investigation of an energy efficient liquid cooled chiller-less data center test facility[J]. Energy and buildings, 2015, 91: 83-96. DOI: 10.1016/ j.enbuild.2015.01.028.
[8] KIM M H, HAM S W, PARK J S, et al. Impact of integrated hot water cooling and desiccant-assisted evaporative cooling systems on energy savings in a data center[J]. Energy, 2014, 78: 384-396. DOI: 10.1016/j. energy.2014.10.023.
[9] FAKHIM B, BEHNIA M, ARMFIELD S W, et al. Cooling solutions in an operational data centre: A case study[J]. Applied thermal engineering, 2011, 31(14/15): 2279-2291. DOI: 10.1016/j.applthermaleng.2011.03.025.
[10] HASSAN S F, ALI M, SAJID A, et al. Free cooling investigation of SEECS data center[J]. Energy procedia, 2015, 75: 1406-1412. DOI: 10.1016/j.egypro.2015.07.233.
[11] MALKÄMAKI T, OVASKA S J. Solar energy and free cooling potential in European data centers[J]. Procedia computer science, 2012, 10: 1004-1009. DOI: 10.1016/j.procs.2012.06.138.
[12] 梁利霞, 刘月琴. 数据中心制冷方案比较分析[J]. 发电与空调, 2012, 33(5): 83-87. DOI: 10.3969/J.ISSN. 2095-3429.2012.05.024.
[13] 马松. 利用自然冷源实现机房物理降温[J]. 通信电源技术, 2014, 33(S): 52-54. DOI: 10.3969/j.issn.1009-3664. 2014.z1.018.
[14] 吕继祥, 王铁军, 赵丽, 等. 基于自然冷却技术应用的数据中心空调节能分析[J]. 制冷学报, 2016, 37(3): 113-118. DOI: 10.3969/j.issn.0253-4339.2016.03.113.
[15] 佛兰克 P. 英克鲁佩勒, 大卫 P. 德维特, 狄奥多尔 L. 伯格曼, 等. 传热和传质基本原理: 第6版[M]. 葛新石, 叶宏, 译. 北京: 化学工业出版社, 2007: 408-442.