欢迎访问《新能源进展》官方网站!今天是
论文

低剂量抑制剂Inhibex501存在下的甲烷水合物相平衡研究

  • 唐翠萍 ,
  • 戴兴学 ,
  • 梁德青 ,
  • 李栋梁
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院天然气水合物重点实验室,广州 510640;                             
    3.  广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院广州天然气水合物中心,广州 510640
唐翠萍(1977-),女,博士,副研究员,主要从事天然气水合物低剂量抑制剂相关的研究。

收稿日期: 2017-09-29

  修回日期: 2017-11-07

  网络出版日期: 2018-02-28

基金资助

国家自然科学基金项目(41406103)

Equilibrium Conditions for Methane Hydrate in the Presence of Low-Dosage Hydrate Inhibitors Aqueous Solutions

  • TANG Cui-Ping ,
  • DAI Xing-Xue ,
  • LIANG De-Qing ,
  • LI Dong-Liang
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2017-09-29

  Revised date: 2017-11-07

  Online published: 2018-02-28

摘要

含动力学抑制剂的天然气水合物相平衡研究对新型低剂量抑制剂的开发具有指导作用。在283.6 ~ 290.9 K和7.51 MPa ~ 15.97 MPa的温压范围内研究了抑制剂Inhibex501及其溶剂2-乙二醇单丁醚对甲烷水合物相平衡条件的影响。实验结果显示,0.5wt%和2.0wt%浓度的Inhibex501对甲烷水合物形成的热力学条件具有促进作用,能使甲烷水合物形成移向更高的温度或者更低的压力,而2-乙二醇单丁醚在浓度0.2wt% ~ 1.0wt%范围几乎不改变甲烷水合物形成的热力学条件,N-乙烯基己内酰胺与N-乙烯基吡咯烷酮的共聚物对水合物形成热力学条件的改变起主要作用。

本文引用格式

唐翠萍 , 戴兴学 , 梁德青 , 李栋梁 . 低剂量抑制剂Inhibex501存在下的甲烷水合物相平衡研究[J]. 新能源进展, 2018 , 6(1) : 42 -46 . DOI: 10.3969/j.issn.2095-560X.2018.01.007

Abstract

Investigation on equilibrium conditions of natural gas hydrates with low-dosage hydrate inhibitors (LDHIs) aqueous solutions is helpful for the development of LDHIs. In this work, experimental studies on the equilibrium conditions for methane hydrate formation were carried out with different concentrations of N-vinylcaprolactam- N-vinylpyrrolidone copolymer in 2-butoxyethanol (Inhibex501) under temperature range of 283.6 ~ 290.9 K and pressure range of 7.51 MPa ~ 15.97 MPa. Results showed that the formation of methane hydrate was promoted by Inhibex501 with concentration of 0.5wt% and 2.0wt%. The thermodynamic conditions of the formation was nearly unchanged with 2-butoxyethanol concentrations of 0.2wt% ~ 1.0wt%. The N-vinylcaprolactam- N-vinylpyrrolidone copolymer, as the main component of Inhibex501, played a leading role in the change of equilibrium condition of methane hydrates.

参考文献

[1] SLOAN E D. Clathrate hydrate of nature gases[M]. 2nd ed. New York: Marcel Dekker Inc, 1998: 27-49.
[2] KELLAND M A, SVARTAAS T M, DYBVIK L. Studies on gas hydrate inhibitors[C]//Proceedings of the SPE Offshore Europe Conference. Aberdeen: Society of Petroleum Engineers, 1995: 531-539.
[3] LEI H Y, ZHENG Y H, WU B X. Equilibrium PT curve of methane hydrates in the presence of AlCl3[J]. Chinese science bulletin, 2003, 48(1): 53-56. DOI: 10.1007/ BF03183334.
[4] DHOLABHAI P D, ENGLEZOS P, KALOGERAKIS N, et al. Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions[J]. The Canadian journal of chemical engineering, 1991, 69(3): 800-805. DOI: 10.1002/cjce.5450690324.
[5] MAEKAWA T. Equilibrium conditions for clathrate hydrates formed from methane and aqueous propanol solutions[J]. Fluid phase equilibria, 2008, 267(1): 1-5. DOI: 10.1016/j.fluid.2008.02.006.
[6] MOHAMMADI A H, KRAOUTI I, RICHON D. Methane hydrate phase equilibrium in the presence of NaBr, KBr, CaBr2, K2CO3, and MgCl2 aqueous solutions: experimental measurements and predictions of dissociation conditions[J]. The journal of chemical thermodynamics, 2009, 41(6): 779-782. DOI: 10.1016/j.jct.2009.01.004.
[7] 唐翠萍, 梁德青, 樊栓狮. 不同气体组成对低剂量抑制剂效果的影响[J]. 石油与天然气化工, 2011, 40(3): 228-231. DOI: 10.3969/j.issn.1007-3426.2011.03.002.
[8] MOON C, TAYLOR P C, RODGER P M. Molecular dynamics study of gas hydrate formation[J]. Journal of the American chemical society, 2003, 125(16): 4706-4707. DOI: 10.1021/ja028537v.
[9] JENSEN L, THOMSEN K, VON SOLMS N V. Propane hydrate nucleation: experimental investigation and correlation[J]. Chemical engineering science, 2008, 63(3): 3069-3080. DOI: 10.1016/j.ces.2008.03.006.
[10] PENG B Z, SUN C Y, LIU P, et al. Interfacial properties of methane/aqueous VC-713 solution under hydrate formation conditions[J]. Journal of colloid and interface science, 2009, 336(2): 738-742. DOI: 10.1016/j.jcis.2009. 04.028.
[11] MAKOGON T Y, SLOAN E D. Mechanism of kinetic hydrate inhibitors[C]//Proceedings of 4th International Hydrate Conference. Yokohama: Keio University, 2002: 498-503.
[12] XU P, LANG X M, FAN S S, et al. Molecular dynamics simulation of methane hydrate growth in the presence of the natural product pectin[J]. The journal of physical chemistry C, 2016, 120(10): 5392-5397. DOI: 10.1021/ acs.jpcc.5b10342.
[13] KHODAVERDILOO K R, RAD S A, NAEIJI P, et al. Synergistic effects of nonylphenol ethoxylates and polyethylene glycols on performance of gas hydrate kinetic inhibitor[J]. Journal of molecular liquids, 2016, 216: 268-274. DOI: 10.1016/j.molliq.2015.12.107.
[14] JOKANDAN E F, NAEIJI P, VARAMINIAN F. The synergism of the binary and ternary solutions of polyethylene glycol, polyacrylamide and Hydroxyethyl cellulose to methane hydrate kinetic inhibitor[J]. Journal of natural gas science and engineering, 2016, 29: 15-20. DOI: 10.1016/j.jngse.2015.12.016.
[15] FOO C W, RUAN L X, LOU X. The inhibition performance in relation to the adsorption of a polymeric kinetic inhibitor towards THF hydrates in the presence of methanol, ethanol and monoethylene glycol[J]. Journal of natural gas science and engineering, 2016, 35: 1587-1593. DOI: 10.1016/j.jngse.2016.05.059.
[16] 唐翠萍, 戴兴学, 梁德青. 聚乙烯吡咯烷酮对甲烷水合物形成热力学条件的影响[J]. 新能源进展, 2014, 4(1): 28-32. DOI: 10.3969/j.issn.2095-560X.2016.01.005.
[17] TOHIDI B, BURGASS R W, DANESH A, et al. Improving the accuracy of gas hydrate dissociation point measurements[J]. Annals of the New York academy of sciences, 2000, 912: 924-931. DOI: 10.1111/j.1749-6632. 2000.tb06846.x.
文章导航

/