欢迎访问《新能源进展》官方网站!今天是
论文

马更些三角洲冻土区天然气水合物成藏的地质控制因素

  • 刘 杰 ,
  • 孙美静 ,
  • 杨 睿 ,
  • 苏 明 ,
  • 杨楚鹏
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院天然气水合物重点实验室,广州 510640;                     
    3. 广州海洋地质调查局,广州 510750;
    4. 中山大学海洋科学学院,广州 510640
刘 杰(1986-),男,硕士,助理研究员,从事海域天然气水合物成藏地质条件分析方面的科研工作。

收稿日期: 2017-06-20

  修回日期: 2017-12-26

  网络出版日期: 2018-02-28

基金资助

广州市珠江科技新星项目(201710010198);
中国科学院天然气水合物重点实验室基金项目(Y707jd1001);
中国石油–中国科学院科技合作项目(2015A-4813);
国土资源部专项项目(DD20160214)

Geologic Controls on Permafrost-Associated Gas Hydrate Occurrence in the Mackenzie Delta

  • LIU Jie ,
  • SUN Mei-jing ,
  • YANG Rui ,
  • SU Ming ,
  • YANG Chu-peng
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, China;
    3. Guangzhou Marine Geological Survey, Guangzhou 510750, China;
    4. School of marine sciences, Sun Yat-sen University, Guangzhou 510640, China

Received date: 2017-06-20

  Revised date: 2017-12-26

  Online published: 2018-02-28

摘要

本文系统归纳了马更些三角洲冻土区天然气水合物赋存的稳定条件、分布特征和水合物成藏特征,指出构造条件、沉积条件和水动力场在天然气水合物富集过程中起到的重要作用。马更些冻土区天然气水合物主要气体来源为热成因气,空间非均质分布特征明显,且与传统油气资源共生成藏。在冻土带底部温度和压力视为均一条件下,可为深部气源提供运移通道的区域主断层等构造条件是天然气水合物聚集成藏的控制因素。储层非均质性影响天然气水合物的空间分布,粗粒沉积是高饱和度水合物富集的有利场所;同时,冻土层在水合物成藏中起到“封盖作用”,良好的“储盖组合”有利于水合物富集成藏。此外,深部超压流体系统和浅层重力流系统两大水动力场也是影响该地区天然气运移和水合物赋存与分布的重要地质因素。

本文引用格式

刘 杰 , 孙美静 , 杨 睿 , 苏 明 , 杨楚鹏 . 马更些三角洲冻土区天然气水合物成藏的地质控制因素[J]. 新能源进展, 2018 , 6(1) : 47 -54 . DOI: 10.3969/j.issn.2095-560X.2018.01.008

Abstract

The stable condition, distribution and hydrocarbon accumulation characteristics of natural gas hydrate in the Mackenzie Delta area were systemically summarized. The structural condition, sedimentary condition and hydrodynamic field play important roles in the enrichment process of gas hydrate. Permafrost-associated gas hydrate shows characteristics as follows: heterogeneous distribution, gas source from thermogenic gas and coexistence with conventional oil resources in the Mackenzie Delta. Under conditions of temperature and pressure are considered to be uniformed in the bottom of permafrost, the gas hydrate occurrence in the study area is principally controlled by regional main faults, which can offer fluid channel for deep gas source. Coarse clastic sediment can supply favorable storage space, and is a favorable place for the enrichment of high saturation hydrate. Moreover, the permafrost plays a sealing role in hydrate accumulation, good reservoir-cap assemblages are favorable for hydrate accumulation. Besides, the deep overpressure fluid system and shallow gravity flow system are also important factors that influence the migration of natural gas and the occurrence and distribution of hydrate in this area.

参考文献

[1] SLOAN E D JR. Gas hydrates: review of physical/chemical properties[J]. Energy & fuels, 1998, 12(2): 191-196. DOI: 10.1021/ef970164+.
[2] MAJOROWICZ J A, OSADETZ K G. Gas hydrate distribution and volume in Canada[J]. AAPG bulletin, 2001, 85(7): 1211-1230. DOI: 10.1306/8626CA9B-173B- 11D7-8645000102C1865D.
[3] CHEN Z H, ISSLER D R, OSADETZ K G, et al. Pore pressure patterns in Tertiary successions and hydrodynamic implications, Beaufort-Mackenzie Basin, Canada[J]. Bulletin of Canadian petroleum geology, 2010, 58(1): 3-16. DOI: 10.2113/gscpgbull.58.1.3.
[4] OSADETZ K G, CHEN Z H. A re-evaluation of Beaufort Sea-Mackenzie Delta basin gas hydrate resource potential: petroleum system approaches to non- conventional gas resource appraisal and geologically- sourced methane flux[J]. Bulletin of Canadian petroleum geology, 2010, 58(1): 56-71. DOI: 10.2113/gscpgbull.58.1.56.
[5] SAINT-ANGE F, KUUS P, BLASCO S, et al. Multiple failure styles related to shallow gas and fluid venting, upper slope Canadian Beaufort Sea, northern Canada[J]. Marine geology, 2014, 355: 136-149. DOI: 10.1016/j. margeo.2014.05.014.
[6] DALLIMORE S R, COLLETT T S. Regional gas hydrate occurrences, permafrost conditions, and Cenozoic geology, Mackenzie Delta area[C] //DALLIMORE S R, UCHIDA T, COLLETT T S. Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada: Bulletin of the Geological Survey of Canada, 1999(544): 31-43.
[7] 陈欢庆, 王珏, 杜宜静. 储层非均质性研究方法进展[J]. 高校地质学报, 2017, 23(1): 104-116. DOI: 10.16108/ j.issn1006-7493.2016060.
[8] BHADE P, PHIRANI J. Gas production from layered methane hydrate reservoirs[J]. Energy, 2015, 82: 686-696. DOI: 10.1016/j.energy.2015.01.077.
[9] NOGUCHI S, SHIMODA N, TAKANO O, et al. 3-D internal architecture of methane hydrate-bearing turbidite channels in the eastern Nankai Trough, Japan[J]. Marine and petroleum geology, 2011, 28(10): 1817-1828. DOI: 10.1016/j.marpetgeo.2011.02.004.
[10] BOSWELL R, ROSE K, COLLETT T S, et al. Geologic controls on gas hydrate occurrence in the Mount Elbert prospect, Alaska North Slope[J]. Marine and petroleum geology, 2011, 28(2): 589-607. DOI: 10.1016/j.marpetgeo. 2009.12.004.
[11] 张金昌. 天然气水合物勘探开发: 从马里克走向未来——加拿大北极地区天然气水合物勘探开发情况综述[J]. 地质通报, 2005, 24(7): 106-109. DOI: 10.3969/j.issn. 1671-2552.2005.07.018.
[12] 祝有海. 加拿大马更些冻土区天然气水合物试生产进展与展望[J]. 地球科学进展, 2006, 21(5): 513-520. DOI: 10.3321/j.issn:1001-8166.2006.05.010.
[13] BELLEFLEUR G, RIEDEL M, BRENT T. Seismic characterization and continuity analysis of gas-hydrate horizons near Mallik research wells, Mackenzie Delta, Canada[J]. The leading edge, 2006, 25(5): 599-604. DOI 10.1190/1.2202663.
[14] 卢振权, 祝有海, 张永勤, 等. 青海祁连山冻土区天然气水合物的气源条件及其指示意义[J]. 矿床地质, 2013, 32(5): 1035-1044. DOI: 10.3969/j.issn.0258-7106.2013.05.015.
[15] KHLYSTOV O, DE BATIST M, SHOJI H, et al. Gas hydrate of Lake Baikal: discovery and varieties[J]. Journal of Asian earth sciences, 2013, 62: 162-166. DOI: 10.1016/ j.jseaes.2012.03.009.
[16] COLLETT T S. Energy resource potential of natural gas hydrates[J]. AAPG bulletin, 2002, 86(11): 1971-1992. DOI: 10.1306/61EEDDD2-173E-11D7-8645000102C1865D.
[17] 李明宅, 张洪年. 生物气成藏规律研究[J]. 天然气工业, 1997, 17(2): 6-10.
[18] LORENSON T D, WHITICAR M J, WASEDA A, et al. Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well[C] //DALLIMORE S R, UCHIDA T, COLLETT T S. Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada: Bulletin of the Geological Survey of Canada, 1999(544): 143-163.
[19] 刘金龙, 王淑红, 颜文. 海洋天然气水合物与深水油气共生关系探讨[J]. 热带海洋学报, 2015, 34(2): 39-51. DOI: 10.11978/j.issn.1009-5470.2015.02.006.
[20] 张金川, 金之钧, 袁明生, 等. 油气成藏与分布的递变序列[J]. 现代地质, 2003, 17(3): 323-330. DOI: 10.3969/j.issn.1000-8527.2003.03.014.
[21] 雷新华, 林功成, 苗永胜, 等. 天然气水合物与传统油气资源共生成藏模式初探[J]. 海相油气地质, 2013, 18(1): 47-52. DOI: 10.3969/j.issn.1672-9854.2013.01.007.
[22] MAJOROWICZ J A, HANNIGAN P K, OSADETZ K G. Study of the natural gas hydrate “Trap Zone” and the methane hydrate potential in the Sverdrup Basin, Canada[J]. Natural resources research, 2002, (11)2: 79-96. DOI: 10.1023/A:1015575918179.
[23] COLLETT T S, LEE M W, AGENA W F, et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope[J]. Marine and petroleum geology, 2011, 28(2): 279-294. DOI: 10.1016/j.marpetgeo.2009. 12.001.
[24] MAKOGON Y F, HOLDITCH S A, MAKOGON T Y. Natural gas-hydrates—A potential energy source for the 21st Century[J]. Journal of petroleum science and engineering, 2007, 56(1/3): 14-31. DOI: 10.1016/j.petrol. 2005.10.009.
[25] ГИНСБУРГ Д, СОЛОВЪЕВ В А. 天然气水合物形成的地质模式[J]. 史斗, 译. 天然气地球科学, 1998, 9(3/4): 1-8.
[26] TORRES M E, WALLMANN K, TRÉHU A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon[J]. Earth and planetary science letters, 2004, 226(1/2): 225-241. DOI: 10.1016/ j.epsl.2004.07.029.
[27] CHEN Z H, OSADETZ K G, ISSLER D R, et al. Hydrocarbon migration detected by regional temperature field variations, Beaufort-Mackenzie Basin, Canada[J]. AAPG bulletin, 2008, 92(12): 1639-1653. DOI: 10.1306/ 07300808011.
[28] 苏明, 杨睿, 张翠梅, 等. 深水沉积体系研究进展及其对南海北部陆坡区天然气水合物研究的启示[J]. 海洋地质与第四纪地质, 2013, 33(3): 109-116.
[29] WINTERS W J, DALLIMORE S R, COLLETT T S, et al. Physical properties of sediments from the JAPEX/JNOC/ GSC Mallik 2L-38 gas hydrate research well[C]//DALLIMORE S R, UCHIDA T, COLLETT T S. Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada: Bulletin of the Geological Survey of Canada,, 1999(544): 95-100.
[30] ROSE K, BOSWELL R, COLLETT T. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: coring operations, core sedimentology, and lithostratigraphy[J]. Marine and petroleum geology, 2011, 28(2): 311-331. DOI: 10.1016/j.marpetgeo.2010.02.001.
[31] DAI S, LEE C, SANTAMARINA J C. Formation history and physical properties of sediments from the Mount Elbert gas hydrate stratigraphic test well, Alaska north slope[J]. Marine and petroleum geology, 2011, 28(2): 427-438. DOI: 10.1016/j.marpetgeo.2010.03.005.
[32] 庞守吉, 苏新, 何浩, 等. 祁连山冻土区天然气水合物地质控制因素分析[J]. 地学前缘, 2013, 20(1): 223-239.
[33] MAJOROWICZ J A, HANNIGAN P K. Natural gas hydrates in the offshore Beaufort–Mackenzie basin—study of a feasible energy source II[J]. Natural resources research, 2000, 9(3): 201-214. DOI: 10.1023/A:1010179301059.
[34] MILKOV A V, SASSEN R. Economic geology of offshore gas hydrate accumulations and provinces[J]. Marine and petroleum geology, 2002, 19(1): 1-11. DOI: 10.1016/ S0264-8172(01)00047-2.
[35] BERG R R, DEMIS W D, MITSDARFFER A R. Hydrodynamic effects on mission canyon (Mississippian) oil accumulations, Billings Nose Area, North Dakota[J]. AAPG bulletin, 1994, 78(4): 501-518. DOI: 10.1306/ bdff9244-1718-11d7-8645000102c1865d.
[36] FREDERICK J M, BUFFETT B A. Submarine groundwater discharge as a possible formation mechanism for permafrost-associated gas hydrate on the circum-Arctic continental shelf[J]. Journal of geophysical research, 2016, 121(3): 1383-1404. DOI: 10.1002/2015JB012627.
[37] 康德江, 庞雄奇, 吕延防, 等. 松辽盆地西斜坡水动力场与油气的聚集成藏[J]. 地球学报, 2008, 29(2): 205-212. DOI: 10.3321/j.issn:1006-3021.2008.02.011.
[38] HOVLAND M, SVENSEN H. Submarine pingoes: indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea[J]. Marine geology, 2006, 228(1/4): 15-23. DOI: 10.1016/j.margeo.2005.12.005.
[39] SEROV P, PORTNOV A, MIENERT J, et al. Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost[J]. Journal of geophysical research, 2015, 120(8): 1515-1529. DOI: 10.1002/2015JF003467.
文章导航

/