[1] LI B, LI H, MA J X, et al. PEM fuel cells: current status and challenges for electrical vehicle applications[J]. Journal of automotive safety and energy, 2010, 1(4): 260-269. DOI:10.3969/j.issn.1676-8484.2010.04.002.
[2] BANHAM D, KISHIMOTO T, SATO T, et al. New insights into non-precious metal catalyst layer designs for proton exchange membrane fuel cells: improving performance and stability[J]. Journal of power sources, 2017, 344: 39-45. DOI: 10.1016/j.jpowsour.2017.01.086.
[3] Ballard plans world’s first PEMFC product with low-cost Nisshinbo non-precious metal catalyst[J]. Fuel cells bulletin, 2017, 9: 1. DOI: 10.1016/S1464-2859(17)30338-3.
[4] ZHANG R, ZHANG J, MA F, et al. Preparation of Mn-N-C catalyst and its electrocatalytic activity for the oxygen reduction reaction in alkaline medium[J]. Journal of fuel chemistry and technology, 2014, 42(4): 467-475. DOI: 10.1016/S1872-5813(14)60022-0.
[5] BAU V M, BO X J, GUO L P. Nitrogen-doped cobalt nanoparticles/nitrogen-doped plate-like ordered mesoporous carbons composites as noble-metal free electrocatalysts for oxygen reduction reaction[J]. Journal of energy chemistry, 2017, 26(1): 63-71. DOI: 10.1016/j.jechem. 2016.07.005.
[6] ZHAO Q, LI Y J, LI Y T, et al. Hierarchical hybrid of Ni3N/N-doped reduced graphene oxide nanocomposite as a noble metal free catalyst for oxygen reduction reaction[J]. Applied surface science, 2017, 400: 245-253. DOI: 10.1016/j.apsusc.2016.12.203.
[7] MTUKULA A C, SHEN J, BO X J, et al. High utilization efficiency of NiCo2O4 supported on porous graphene as noble metal-free catalysts for oxygen reduction reaction[J]. Journal of alloys and compounds, 2016, 655: 229-237. DOI: 10.1016/j.jallcom.2015.09.185.
[8] FU G T, LIU Z Y, ZHANG J F, et al. Spinel MnCo2O4 nanoparticles cross-linked with two-dimensional porous carbon nanosheets as a high-efficiency oxygen reduction electrocatalyst[J]. Nano research, 2016, 9(7): 2110-2122. DOI: 10.1007/s12274-016-1101-2.
[9] TANG Y F, CHEN T, GUO W F, et al. Reduced graphene oxide supported MnS nanotubes hybrid as a novel non-precious metal electrocatalyst for oxygen reduction reaction with high performance[J]. Journal of power sources, 2017, 362: 1-9. DOI: 10.1016/j.jpowsour.2017. 07.019.
[10] JASINSKI R. A new fuel cell cathode catalyst[J]. Nature, 1964, 201(4925): 1212-1213. DOI: 10.1038/2011212a0.
[11] NIU K X, YANG B P, CUI J F, et al. Graphene-based non-noble-metal Co/N/C catalyst for oxygen reduction reaction in alkaline solution[J]. Journal of power sources, 2013, 243: 65-71. DOI: 10.1016/j.jpowsour.2013.06.007.
[12] CHOI I A, KWAK D H, HAN S B, et al. Doped porous carbon nanostructures as non-precious metal catalysts prepared by amino acid glycine for oxygen reduction reaction[J]. Applied catalysis b: environmental, 2017, 211: 235-244. DOI: 10.1016/j.apcatb.2017.04.039.
[13] WU G, JOHNSTON C M, MACK N H, et al. Synthesis-structure-performance correlation for polyaniline- Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells[J]. Journal of materials chemistry, 2011, 21(30): 11392-11405. DOI: 10.1039/c0jm03613g.
[14] LEFÈVRE M, PROIETTI E, JAOUEN F, et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009, 324(5923): 71-74. DOI: 10.1126/science.1170051.
[15] GOKHALE R, CHEN Y C, SEROV A, et al. Direct synthesis of platinum group metal-free Fe-N-C catalyst for oxygen reduction reaction in alkaline media[J]. Electrochemistry communications, 2016, 72: 140-143. DOI: 10.1016/j.elecom.2016.09.013.
[16] OSMIERI L, ESCUDERO-CID R, ARMANDI M, et al. Fe-N/C catalysts for oxygen reduction reaction supported on different carbonaceous materials. Performance in acidic and alkaline direct alcohol fuel cells[J]. Applied catalysis b: environmental, 2017, 205: 637-653. DOI: 10.1016/j.apcatb.2017.01.003.
[17] MUN Y, KIM M J, PARK S A, et al. Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-Nx/C active sites for oxygen reduction reaction in fuel cells[J]. Applied catalysis b: environmental, 2018, 222: 191-199. DOI: 10.1016/j.apcatb.2017.10.015.
[18] OSMIERI L, ESCUDERO-CID R, MONTEVERDE VIDELA A H A, et al. Performance of a Fe-N-C catalyst for the oxygen reduction reaction in direct methanol fuel cell: cathode formulation optimization and short-term durability[J]. Applied catalysis b: environmental, 2017, 201: 253-265. DOI: 10.1016/j.apcatb.2016.08.043.
[19] 李姝玲, 原鲜霞, 孔海川, 等. Fe-PPy-TsOH/C用作质子交换膜燃料电池氧电极催化剂的研究[J]. 无机材料学报, 2017, 32(4): 393-399. DOI: 10.15541/jim20160399.
[20] LIANG J W, HASSAN M, ZHU D S, et al. Cobalt nanoparticles/nitrogen-doped graphene with high nitrogen doping efficiency as noble metal-free electrocatalysts for oxygen reduction reaction[J]. Journal of colloid and interface science, 2017, 490: 576-586. DOI: 10.1016/j. jcis.2016.11.101.
[21] HU T H, YIN Z S, GUO J W, et al. Synthesis of Fe nanoparticles on polyaniline covered carbon nanotubes for oxygen reduction reaction[J]. Journal of power sources, 2014, 272: 661-671. DOI: 10.1016/j.jpowsour. 2014.08.124.
[22] MUTYALA S, MATHIYARASU J. Noble metal-free Fe-N-CNFs as an efficient electrocatalyst for oxygen reduction reaction[J]. International journal of hydrogen energy, 2017. DOI: 10.1016/j.ijhydene.2017.06.133. (in Press)
[23] HAN C, BO X J, LIU J, et al. Fe, Co bimetal activated N-doped graphitic carbon layers as noble metal-free electrocatalysts for high-performance oxygen reduction reaction[J]. Journal of alloys and compounds, 2017, 710: 57-65. DOI: 10.1016/j.jallcom.2017.03.241.
[24] PARK J C, CHOI C H. Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance[J]. Journal of power sources, 2017, 358: 76-84. DOI: 10.1016/j.jpowsour.2017.05.018.
[25] WU G, MORE K L, JOHNSTON C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028): 443-447. DOI: 10.1126/science.1200832.
[26] CHEN X, SUN S R, WANG X Y, et al. DFT study of polyaniline and metal composites as nonprecious metal catalysts for oxygen reduction in fuel cells[J]. Journal of physical chemistry c, 2012, 116(43): 22737-22742. DOI: 10.1021/jp307055j.
[27] WANG Y G, CHENG L, LI F, et al. High electrocatalytic performance of Mn3O4/mesoporous carbon composite for oxygen reduction in alkaline solutions[J]. Chemistry of materials, 2007, 19(8): 2095-2101. DOI: 10.1021/cm062685t.
[28] CHENG F Y, SU Y, LIANG J, et al. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media[J]. Chemistry of materials, 2010, 22(3): 898-905. DOI: 10.1021/cm901698s.
[29] FENG J, LIANG Y Y, WANG H L, et al. Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis[J]. Nano research, 2012, 5(10): 718-725. DOI: 10.1007/s12274-012-0256-8.
[30] TAN Y M, XU C F, CHEN G X, et al. Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction[J]. Advanced functional materials, 2012, 22(21): 4584-4591. DOI: 10.1002/adfm.201201244.
[31] 王俊, 魏子栋. 非贵金属氧还原催化剂的研究进展[J]. 物理化学学报, 2017, 33(5): 886-902. DOI: 10.3866/ PKU.WHXB201702092.
[32] LIANG Y, LI Y, WANG H, et al. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts[J]. Journal of the American chemical society, 2012, 134(7): 3517-3523. DOI: 10.1021/ja210924t.
[33] GUO S J, ZHANG S, WU L H, et al. Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen[J]. Angewandte chemie international edition, 2012, 51(47): 11770-11773. DOI: 10.1002/anie. 201206152.
[34] LIANG Y Y, WANG H L, DIAO P, et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes[J]. Journal of the American chemical society, 2012, 134(38): 15849-15857. DOI: 10.1021/ja305623m.
[35] LIANG Y Y, LI Y G, WANG H L, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature materials, 2011, 10(10): 780-786. DOI: 10.1038/nmat3087.
[36] WU G, NELSON M A, MACK N H, et al. Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst[J]. Chemical communications, 2010, 46(40): 7489-7491. DOI: 10.1039/C0CC03088K.
[37] SASAKI K, ZHANG L, ADZIC R R. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction[J]. Physical chemistry chemical physics, 2008, 10(1): 159-167. DOI: 10.1039/B709893F.
[38] IMAI H, MATSUMOTO M, MIYAZAKI T, et al. Structural defects working as active oxygen-reduction sites in partially oxidized Ta-carbonitride core-shell particles probed by using surface-sensitive conversion- electron-yield X-ray absorption spectroscopy[J]. Applied physics letters, 2010, 96(19): 191905. DOI: 10.1063/1. 3430543.
[39] SUNTIVICH J, MAY K J, GASTEIGE H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011, 334(6061): 1383-1385. DOI: 10.1126/science.1212858.
[40] INDRA A, MENEZES P W, SAHRAIE N R, et al. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides[J]. Journal of the American chemical society, 2014, 136(50): 17530-17536. DOI: 10.1021/ja509348t.
[41] ZHAO A Q, MASA J, XIA W, et al. Spinel Mn-Co oxide in N-doped carbon nanotubes as a bifunctional electrocatalyst synthesized by oxidative cutting[J]. Journal of the American chemical society, 2014, 136(21): 7551-7554. DOI: 10.1021/ja502532y.
[42] WANG L X, GENG J, WANG W H, et al. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction[J]. Nano research, 2015, 8(12): 3815-3822. DOI: 10.1007/s12274-015-0881-0.
[43] HASSAN D, EL-SAFTY S, KHALIL K A, et al. Carbon supported engineering NiCo2O4 hybrid nanofibers with enhanced electrocatalytic activity for oxygen reduction reaction[J]. Materials, 2016, 9(9): 759. DOI: 10.3390/ ma9090759.
[44] CHENG F Y, SHEN J, PENG B, et al. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J]. Nature chemistry, 2011, 3(1): 79-84. DOI: 10.1038/nchem.931.
[45] YANG H C, HU F, ZHANG Y J, et al. Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts[J]. Nano research, 2016, 9(1): 207-213. DOI: 10.1007/ s12274-016-0982-4.
[46] SIDIK R A, ANDERSON A B. Co9S8 as a catalyst for electroreduction of O2: quantum chemistry predictions[J]. The journal of physical chemistry b, 2006, 110(2): 936-941. DOI: 10.1021/jp054487f.
[47] Feng Y J, Alonso-Vante N. Nonprecious metal catalysts for the molecular oxygen-reduction reaction[J]. Physica status solidi (b), 2008, 245(9): 1792-1806. DOI: 10.1002/pssb.200879537.
[48] FENG Y J, HE T, ALONSO-VANTE N. In situ free-surfactant synthesis and ORR-electrochemistry of carbon-supported Co3S4 and CoSe2 nanoparticles[J]. Chemistry of materials, 2008, 20(1): 26-28. DOI: 10.1021/cm7024763.
[49] GANESAN P, PRABU M, SANETUNTIKUL J, et al. Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: an efficient electrocatalyst for oxygen reduction and evolution reactions[J]. ACS catalysis, 2015, 5(6): 3625-3637. DOI: 10.1021/acscatal.5b00154.
[50] FENG Y J, HE T, ALONSO-VANTE N. Carbon- supported CoSe2 nanoparticles for oxygen reduction reaction in acid medium[J]. Fuel cells, 2010, 10(1): 77-83. DOI: 10.1002/fuce.200900038.
[51] ZHOU Y X, YAO H B, WANG Y, et al. Hierarchical hollow Co9S8 microspheres: solvothermal synthesis, magnetic, electrochemical, and electrocatalytic properties[J]. Chemistry-a European journal, 2010, 16(39): 12000-12007. DOI: 10.1002/chem.200903263.
[52] WU G, CHUNG H T, NELSON M, et al. Graphene- riched Co9S8-N-C non-precious metal catalyst for oxygen reduction in alkaline media[J]. ECS transactions, 2011, 41(1): 1709-1717. DOI: 10.1149/1.3635702.
[53] WANG H L, LIANG Y Y, LI Y G, et al. Co1-xS-graphene hybrid: a high-performance metal chalcogenide electrocatalyst for oxygen reduction[J]. Angewandte chemie international edition, 2011, 50(46): 10969-10972. DOI: 10.1002/anie. 201104004.
[54] ZHONG H X, ZHANG H M, LIU G, et al. A novel non-noble electrocatalyst for PEM fuel cell based on molybdenum nitride[J]. Electrochemistry communications, 2006, 8(5): 707-712. DOI: 10.1016/j.elecom.2006.02.020.
[55] ZHONG H X, ZHANG H M, LIANG Y M, et al. A novel non-noble electrocatalyst for oxygen reduction in proton exchange membrane fuel cells[J]. Journal of power sources, 2007, 164(2): 572-577. DOI: 10.1016/j.jpowsour. 2006.11.080.
[56] QI J, JIANG L H, JIANG Q, et al. Theoretical and experimental studies on the relationship between the structures of molybdenum nitrides and their catalytic activities toward the oxygen reduction reaction[J]. Journal of physical chemistry, 2010, 114(42): 18159-18166. DOI: 10.1021/jp102284s.
[57] XIAO M L, ZHU J B, FENG L G, et al. Meso/ macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions[J]. Advanced materials, 2015, 27(15): 2521-2527. DOI: 10.1002/adma.201500262.
[58] YIN H, ZHANG C Z, LIU F, et al. Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction[J]. Advanced functional materials, 2014, 24(20): 2930-2937. DOI: 10.1002/adfm.201303902.
[59] ZHANG S M, ZHANG H Y, LIU Q, et al. Fe-N doped carbon nanotube/graphene composite: facile synthesis and superior electrocatalytic activity[J]. Journal of materials chemistry a, 2013, 10(1): 3302-3308. DOI: 10.1039/C2TA01351G.
[60] SUN T, WU Q, CHE R C, et al. Alloyed Co-Mo nitride as high-performance electrocatalyst for oxygen reduction in acidic medium[J]. ACS catalysis, 2015, 5(3): 1857-1862. DOI: 10.1021/cs502029h.
[61] CAO B F, VEITH G M, DIAZ R E, et al. Cobalt molybdenum oxynitrides: synthesis, structural characterization, and catalytic activity for the oxygen reduction reaction[J]. Angewandte chemie international edition, 2013, 52(41): 10753-10757. DOI: 10.1002/anie. 201303197.
[62] ANDO T, IZHAR S, TOMINAGA H, et al. Ammonia-treated carbon-supported cobalt tungsten as fuel cell cathode catalyst[J]. Electrochimica acta, 2010, 55(8): 2614-2621. DOI: 10.1016/j.electacta.2009.12.039.