超临界CO2循环可以耦合较低温度的地热和较高温度的太阳能热组成混合热源发电系统。相比能量分析方法,火用分析方法更便于分析混合系统对提高能量利用率的作用,以及识别造成可用能损失的设备和过程。115℃地热和200℃地热分别与采用槽式聚光集热技术的太阳能热组成混合热源,构成简单回热超临界CO2循环。分析结果表明:混合系统的火用效率比单纯太阳能热的循环系统提高了5% ~ 10%;太阳能聚光集热器的?损失最大,占80%以上,其次是除预冷器以外的各类换热器以及透平;相比之下,压缩机和预冷器的火用损失较小。减少?损失的关键是提高太阳能聚光集热器和换热器的性能,包括提高集热管运行温度,以及提高换热器效能。
Supercritical carbon dioxide cycle can be composed to a hybrid power system by combining low temperature geothermal energy with high temperature solar energy. Compared with energy analysis method, exergy analysis method is better to analyze the effect of hybrid system for the improvement of the energy utilization efficiency, as well as the identification of equipment and process causing the loss of available energy. A simple regenerative cycle was configured, using 115oC and 200oC geothermal energy respectively, combined with solar energy with parabolic trough concentrating receiving technology. Analysis results showed that the exergy efficiency of hybrid system was 5% ~ 10% higher than system with pure solar energy; solar energy concentrating and receiving devices caused the largest portion of exergy loss, accounting for more than 80%, followed by various types of heat exchangers except precooler and the turbine; in contrast, the compressor and the precooler caused the lest exergy loss. Improvement of the performance of solar energy concentrating and receiving devices and the heat exchangers was the key to cut down the exergy loss, including increase in operating temperature of solar receiver, and the effectiveness of heat exchangers.
[1] 张丽英, 翟辉, 代彦军, 等. 一种地热与太阳能联合发电系统研究[J]. 太阳能学报, 2008, 29(9): 1086-1091. DOI: 10.3321/j.issn:0254-0096.2008.09.007.
[2] 邱卓莹, 王令宝, 李华山, 等. 甘孜地热发电能量分析与?分析[J]. 新能源进展, 2015, 3(3): 207-213.
[3] 徐琼辉, 龚宇烈, 骆超, 等. 太阳能–地热能联合发电系统研究进展[J]. 新能源进展, 2016, 4(5): 404-410. DOI: 10.3969/j.issn.2095-560X.2016.05.011.
[4] 周刚, 倪晓阳, 李金锋, 等. 不受地理位置限制的地热和太阳能联合发电系统[J]. 地球科学——中国地质大学学报, 2006, 31(3): 394-398. DOI: 10.3321/j.issn:1000- 2383.2006.03.018.
[5] 年越, 刘石. 地热与太阳能联合发电系统热力性能分析[J]. 热力发电, 2014, 43(9): 1-4, 11. DOI: 10.3969/j.issn. 1002-3364.2014.09.001.
[6] 仲旻, 黄秀勇, 王瑞林, 等. 槽式太阳能与地热能联合运行系统设计[J]. 太阳能, 2014(12): 46-51. DOI: 10.3969/j.issn.1003-0417.2014.12.012.
[7] AHN Y, BAE S J, KIM M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear engineering and technology, 2015, 47(6): 647-661. DOI: 10.1016/j.net.2015.06.009.
[8] KIM Y M, KIM C G, FAVRA D. Transcritical or supercritical CO2 cycles using both low- and high- temperature heat sources[J]. Energy, 2012, 43(1): 402-415. DOI:10.1016/j.energy.2012.03.076.
[9] WANG X H, LIU Q B, BAI Z, et al. Thermodynamic analysis of the cascaded supercritical CO2 cycle integrated with solar and biomass energy[J]. Energy procedia, 2017, 105: 445-452. DOI: 10.1016/j.egypro.2017.03.339.
[10] 郑开云. 超临界二氧化碳布雷顿循环效率分析[J]. 发电设备, 2017, 31(5): 305-309. DOI:10.3969/j.issn.1671- 086X.2017.05.001.
[11] 王志峰. 太阳能热发电站设计[M]. 北京: 化学工业出版社, 2014: 154-155.
[12] PARROTT J E. Theoretical upper limit to the conversion efficiency of solar energy[J]. Solar energy, 1978, 21(3): 227-229. DOI: 10.1016/0038-092X(78)90025-7.
[13] DIPIPPO R. 地热发电厂: 原理、应用、案例研究和环境影响[M]. 马永生, 刘鹏程, 李瑞霞, 等译. 3版. 北京: 中国石化出版社, 2016: 368.
[14] EXIDA. DOWTHERM™ a technical data sheet[EB/OL]. http://www.dow.com/heattrans/csp/literature.htm.
[15] 赵冠春, 钱立伦. ?分析及其应用[M]. 北京: 高等教育出版社, 1984: 85-87.