为缩短枸杞干燥时间,提高干制枸杞的质量,减少能源消耗,本文提出了一种新型太阳能–空气源热泵联合干燥系统。该系统主要由太阳能集热器和空气源热泵机组等设备组成,可以实现太阳能单独干燥、热泵单独干燥和太阳能–空气源热泵联合干燥三种工作模式。本文根据枸杞的干燥特性,分段设定最佳的干燥温度,进行了热泵单独运行和太阳能–热泵联合运行两种工作模式下干燥枸杞的对比实验。结果表明,干燥50 kg枸杞,太阳能–热泵联合运行比热泵单独运行节省了2.9 kW?h电能,若同时除去系统本身的耗能,节省的电能占热泵单独运行耗电量的29.5%。同时,与太阳能单独干燥相比,太阳能–热泵联合干燥具有较高的除湿能耗比,两者最大差值为0.71 kg/(kW?h)。本文提出的太阳能–热泵联合干燥系统具有提高干燥产品的品质、缩短干燥时间和节约干燥成本等优点,适宜推广。
In order to shorten the drying time of Lycium barbarum, improve the quality of dried Lycium barbarum and reduce energy consumption, a new drying system with solar assisted air source heat pump is proposed in this work. The system is mainly composed of a solar collector and an air source heat pump. The system can be operated by three work patterns: the pattern of drying only with solar energy, the pattern of heat pump drying alone, and the pattern of hybrid solar air source heat pump drying. According to the characteristics of Chinese wolfberry, the optimal drying temperature was set in different stages, and the experiment of drying Lycium barbarum under both heat pump alone and hybrid solar heat pump operation was carried out. The result shows that compared with the heat pump alone drying mode, the system operated on the hybrid mode can save 2.9 kW?h electric energy when drying 50 kg Lycium barbarum, the energy saved accounts for 29.5% of the power consumption of the heat pump alone, if the energy consumed by the system do not be taken into consideration. Comparing with drying only with solar energy, the system operated on hybrid solar air source heat pump drying mode has a higher specific moisture extraction rate (RSEM) and the maximum difference is 0.71 kg/(kW?h). Therefore, the drying system with solar assisted air source heat pump proposed in this paper shows more advantages of improving the quality of dry products, shortening the drying time and saving the cost of drying. It is suitable for popularization.
null
[1] 苟金萍. 枸杞产品标准现状与发展趋势[J]. 农业质量标准, 2007(4): 28-29. DOI: 10.3969/j.issn.1674-8255. 2007.04.009. <br />
[2] 李瑞盈. 宁夏枸杞产地特征识别技术研究[D]. 保定: 河北大学, 2013. <br />
[3] 柴京富. 枸杞热风干燥特性及最佳工艺的试验研究[D]. 呼和浩特: 内蒙古农业大学, 2004. <br />
[4] 吴古飞. 枸杞干燥过程中防霉剂的开发与应用研究[D]. 兰州: 兰州理工大学, 2011. <br />
[5] 刘锡建, 肖稳发, 曹俭, 等. 枸杞多糖的研究进展[J]. 上海工程技术大学学报, 2008, 22(4): 299-302. DOI: 10.3969/j.issn.1009-444X.2008.04.003. <br />
[6] 王海, 高月, 王颉, 等. 适宜干燥方法提高干制枸杞品质[J]. 农业工程学报, 2015, 31(21): 271-276. DOI: 10.11975/j.issn.1002-6819.2015.21.036. <br />
[7] 聂林林. 香菇热泵除湿干燥技术的研究[D]. 郑州: 河南工业大学, 2015. <br />
[8] 姚思远. 混联式太阳能干燥设备优化及枸杞干燥工艺研究[D]. 保定: 河北农业大学, 2014. <br />
[9] BEST R, CRUZ J M, GUTIERREZ J, et al. Experimental results of a solar assisted heat pump rice drying system[J]. Renewable energy, 1996, 9(1/4): 690-694. DOI: 10.1016/0960-1481(96)88379-0. <br />
[10] ?EVIK S, AKTA? M, DO?AN H, et al. Mushroom drying with solar assisted heat pump system[J]. Energy conversion and management, 2013, 72: 171-178. DOI: 10.1016/j.enconman.2012.09.035. <br />
[11] 姚远, 廉永旺, 王显龙, 等. 太阳能-热泵联合茶叶烘焙装置的创新设计与实验研究[J]. 新能源进展, 2017, 5(1): 47-55. DOI: 10.3969/j.issn.2095-560X.2017.01.007. <br />
[12] 冯道宁, 孙健, 李丽, 等. 小型太阳能空气源热泵联合果蔬干燥系统研究与设计[J]. 中国农机化学报, 2015, 36(3): 160-163, 173. DOI: 10.13733/j.jcam.issn.2095-5553. 2015.03.039. <br />
[13] 吴中华, 李文丽, 赵丽娟, 等. 枸杞分段式变温热风干燥特性及干燥品质[J]. 农业工程学报, 2015, 31(11): 287-293. DOI: 10.11975/j.issn.1002-6819.2015.11.041. <br />
[14] DARVISHI H, ASL A R, ASGHARI A, et al. Study of the drying kinetics of pepper[J]. Journal of the saudi society of agricultural sciences, 2014, 13(2): 130-138. DOI: 10.1016/j.jssas.2013.03.002. <br />
[15] MOHANRAJ M, BELYAYEV Y, JAYARAJ S, et al. Research and developments on solar assisted compression heat pump systems–A comprehensive review (Part A: modeling and modifications)[J]. Renewable and sustainable energy reviews, 2018, 83: 90-123. DOI: 10.1016/j.rser.2017.08.022. <br />