采用自行设计的杜瓦瓶绝热自加热反应装置,对稻草在室温条件下储存时的自加热过程进行研究,并比较样品水分(50%、60%和70%,以干基表示)和颗粒尺寸(2 mm和0.2 mm)的影响。结果表明,保持颗粒尺寸一定,稻草水分含量越高,样品内部自加热越明显;保持水分含量一定,颗粒尺寸越小(0.2 mm),样品内部产热量越多,自加热现象越明显。反应前后样品水分、灰分、pH值的增大及发热量的变化表明自加热导致明显的热、质损失,因此合理控制稻草等秸秆类生物质燃料在储存时的水分含量和颗粒尺寸对防范自加热至关重要。
关键词:
生物质; 稻草; 自加热; 水分; 粒径
In the laboratory scale, a dewar flask heat insulation equipment was designed to conduct the self-heating experiment of rice straw at room temperature, and the influence of the moisture (50%, 60% and 70%, expressed as dry basis) and particle size (≤ 2 mm and 0.2 mm) were studied. The results indicated that the internal temperature of the sample increased with the moisture content, while decreased with the particle size. The increase of moisture, ash content, pH value and the change of calorific value reflected that self-heating led to obvious losses of heat and mass. Therefore controlling the moisture content and particle size reasonably is crucial to prevent the occurrence of self-heating.
[1] 国家能源局. 生物质能发展“十三五”规划[R]. 北京: 国家能源局, 2016: 1-21.
[2] 张艳丽, 王飞, 赵立欣, 等. 我国秸秆收储运系统的运营模式、存在问题及发展对策[J]. 可再生能源, 2009, 27(1): 1-5. DOI: 10.3969/j.issn.1671-5292.2009.01.001.
[3] 胡海涛, 李允超, 王贤华, 等. 生物质预处理技术及其对热解产物的影响综述[J]. 生物质化学工程, 2014, 48(1): 44-50. DOI: 10.3969/j.issn.1673-5854.2014.01.008.
[4] HE X, LAU A K, SOKHANSANJ S, et al. Dry matter losses in combination with gaseous emissions during the storage of forest residues[J]. Fuel, 2012, 95: 662-664. DOI: 10.1016/j.fuel.2011.12.027.
[5] EMERY I R, MOSIER N S. The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuels production[J]. Biomass and bioenergy, 2012, 39: 237-246. DOI: 10.1016/j.biombioe. 2012.01.004.
[6] PHANPHANICH M, MANI S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass[J]. Bioresource technology, 2011, 102(2): 1246-1253. DOI: 10.1016/j.biortech.2010.08.028.
[7] PIMCHUAI A, DUTTA A, BASU P. Torrefaction of agriculture residue to enhance combustible properties[J]. Energy & fuels, 2010, 24(9): 4638-4645. DOI: 10.1021/ ef901168f.
[8] DARR M J, SHAH A. Biomass storage: an update on industrial solutions for baled biomass feedstocks[J]. Biofuels, 2012, 3(3): 321-332. DOI: 10.4155/bfs.12.23.
[9] ERIKSSON A. Energy efficient storage of biomass at vattenfall heat and power plant[D]. Uppsala: Swedish University of Agricultural Sciences, 2011: 5.
[10] THÖRNQVIST T. Drying and storage of forest residues for energy production[J]. Biomass, 1985, 7(2): 125-134. DOI: 10.1016/0144-4565(85)90038-1.
[11] KOPPEJAN J, LÖNNERMARK A, PERSSON H, et al. Health and safety aspects of solid biomass storage, transportation and feeding[R]. Report of International Energy Agency Bioenergy, 2013.
[12] CHOI H L, RICHARD T L, AHN H K. Composting high moisture materials: biodrying poultry manure in a sequentially fed reactor[J]. Compost science & utilization, 2001, 9(4): 303-311. DOI: 10.1080/1065657X.2001.10702049.
[13] FESTENSTEIN G N, LACEY J, SKINNER F A, et al. Self-heating of hay and grain in Dewar flasks and the development of farmer’s lung antigens[J]. Journal of general microbiology, 1965, 41(3): 380-407. DOI: 10.1099/00221287-41-3-389.
[14] REDDY A P, JENKINS B M, VANDERGHEYNST J S. The critical moisture range for rapid microbial decomposition of rice straw during storage[J]. Transactions of the ASABE, 2009, 52(2): 673-677. DOI: 10.13031/2013.26806.
[15] BUGGELN R, RYNK R. Self-heating in yard trimmings: conditions leading to spontaneous combustion[J]. Compost science & utilization, 2002, 10(2): 162-182. DOI: 10.1080/1065657X.2002.10702076.
[16] 陈汉平, 李斌, 李海平, 等. 生物质燃烧技术现状与展望[J]. 工业锅炉, 2009(5): 1-7. DOI: 10.3969/j.issn. 1004-8774.2009.05.001.
[17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 固体生物质燃料工业分析方法: GB/T 28731-2012[S]. 北京: 中国标准出版社, 2013.
[18] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 固体生物质燃料发热量测定方法: GB/T 30727-2014[S]. 北京: 中国标准出版社, 2014.
[19] British Standards Institution. Soil improvers and growing media. Determination of pH: BS EN 13037:2000[S]. London: British Standards Institution, 2000.
[20] DELLA ZASSA M, BIASIN A, ZERLOTTIN M, et al. Self-heating of dried industrial wastewater sludge: lab-scale investigation of supporting conditions[J]. Waste management, 2013, 33(6): 1469-1477. DOI: 10.1016/j. wasman.2013.02.010.
[21] KUBLER H. Heat generating processes as cause of spontaneous ignition in forest products[J]. Forest products abstracts, 1987, 10(11): 299-322.
[22] RYCKEBOER J, MERGAERT J, VAES K, et al. A survey of bacteria and fungi occurring during composting and self-heating processes[J]. Annals of microbiology, 2003, 53(4): 349-410.
[23] JIRJIS R. Effects of particle size and pile height on storage and fuel quality of comminuted Salix viminalis[J]. Biomass and bioenergy, 2005, 28(2): 193-201. DOI: 10.1016/j.biombioe.2004.08.014.
[24] HAKKILA P. Utilization of residual forest biomass[M]. Berlin Heidelberg: Springer-Verlag, 1989. DOI: 10.1007/ 978-3-642-74072-5_8.
[25] CASAL M D, GIL M V, PEVIDA C, et al. Influence of storage time on the quality and combustion behaviour of pine woodchips[J]. Energy, 2010, 35(7): 3066-3071. DOI: 10.1016/j.energy.2010.03.048.