[1] GALLEZOT P. Conversion of biomass to selected chemical products[J]. Chemical society reviews, 2012, 41(4): 1538-1558. DOI: 10.1039/C1cs15147A.
[2] WANG F F, LIU C L, DONG W S. Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts[J]. Green chemistry, 2013, 15(8): 2091-2095. DOI: 10.1039/C3gc40836A.
[3] SHI N, LIU Q Y, ZHANG Q, et al. High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system[J]. Green chemistry, 2013, 15(7): 1967-1974. DOI: 10.1039/ C3gc40667A.
[4] LI G Y, LI N, YANG J F, et al. Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose[J]. Bioresource technology, 2013, 134: 66-72. DOI: 10.1016/j.biortech.2013.01.116.
[5] ROMÁN-LESHKOV Y, BARRETT C J, DUMESIC J A, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature, 2007, 447(7147): 982-985. DOI: 10.1038/nature05923.
[6] KUNKES E L, SIMONETTI D A, WEST R M, et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes[J]. Science, 2008, 322(5900): 417-421. DOI: 10.1126/science.1159210.
[7] EERHART A J J E, FAAIJ A P C, PATEL M K. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance[J]. Energy & environmental science, 2012, 5(4): 6407-6422. DOI: 10.1039/C2ee02480B.
[8] VAN PUTTEN R J, VAN DER WAAL J C, DE JONG E, et al. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources [J]. Chemical Reviews, 2013, 113(3): 1499-1597. DOI: 10.1021/Cr300182k.
[9] MAKI-ARVELA P, SIMAKOVA I L, SALMI T, et al. Production of lactic Acid/Lactates from biomass and their catalytic transformations to commodities[J]. Chemical reviews, 2014, 114(3): 1909-1971. DOI: 10.1021/cr400203v.
[10] ZHANG Z R, SONG J L, HAN B X. Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids [J]. Chemical Reviews, 2017, 117(10): 6834-6880. DOI: 10.1021/acs.chemrev. 6b00457.
[11] FAN Y X, ZHOU C H, ZHU X H. Selective catalysis of lactic acid to produce commodity chemicals[J]. Catalysis reviews: science and engineering, 2009, 51(3): 293-324. DOI: 10.1080/01614940903048513.
[12] KROCHTA J M, TILLIN S J, HUDSON J S. Degradation of polysaccharides in alkaline solution to organic acids: product characterization and identification[J]. Journal of applied polymer science, 1987, 33(4): 1413-1425. DOI: 10.1002/app.1987.070330428.
[13] ANTAL M J JR, MOK W S L, RICHARDS G N. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose[J]. Carbohydrate research, 1990, 199(1): 91-109. DOI: 10.1016/0008-6215(90)84096-D.
[14] RASRENDRA C B, FACHRI B A, MAKERTIHARTHA I G B N, et al. Catalytic conversion of dihydroxyacetone to lactic acid using metal salts in water[J]. Chemsuschem, 2011, 4(6): 768-777. DOI: 10.1002/cssc.201000457.
[15] DENG W P, ZHANG Q H, WANG Y. Catalytic transformations of cellulose and its derived carbohydrates into 5-hydroxymethylfurfural, levulinic acid, and lactic acid[J]. Science China chemistry, 2015, 58(1): 29-46. DOI: 10.1007/s11426-014-5283-8.
[16] WANG X C, LIANG F B, HUANG C P, et al. Siliceous tin phosphates as effective bifunctional catalysts for selective conversion of dihydroxyacetone to lactic acid [J]. Catalysis Science & Technology, 2016, 6(17): 6551-6560. DOI: 10.1039/c6cy00553e.
[17] SROKOL Z, BOUCHE A G, VAN ESTRIK A, et al. Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds[J]. Carbohydrate research, 2004, 339(10): 1717-1726. DOI: 10.1016/j.carres.2004.04.018.
[18] LIU Z, LI W, PAN C Y, et al. Conversion of biomass-derived carbohydrates to methyl lactate using solid base catalysts[J]. Catalysis communications, 2011, 15(1): 82-87. DOI: 10.1016/j.catcom.2011.08.019.
[19] VERMA D, INSYANI R, SUH Y, et al. Direct conversion of cellulose to high-yield methyl lactate over Ga-doped Zn/H-nanozeolite Y catalysts in supercritical methanol [J]. Green Chemistry, 2017, 19(8): 1969-1982. DOI: 10.1039/c7gc00432j.
[20] DE CLIPPEL F, DUSSELIER M, VAN ROMPAEY R, et al. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts[J]. Journal of the American chemical society, 2012, 134(24): 10089-10101. DOI: 10.1021/Ja301678w.
[21] YANG L S, YANG X K, TIAN E, et al. Mechanistic insights into the production of methyl lactate by catalytic conversion of carbohydrates on mesoporous Zr-SBA-15[J]. Journal of catalysis, 2016, 333: 207-216. DOI: 10.1016/j.jcat.2015.10.013.
[22] HOLM M S, SARAVANAMURUGAN S, TAARNING E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts[J]. Science, 2010, 328(5978): 602-605. DOI: 10.1126/science.1183990.
[23] WANG A Q, ZHANG T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Accounts of chemical research, 2013, 46(7): 1377-1386. DOI: 10.1021/Ar3002156.
[24] ZHAO H B, HOLLADAY J E, BROWN H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science, 2007, 316(5831): 1597-1600. DOI: 10.1126/science.1141199.
[25] VAN ZANDVOORT I, WANG Y H, RASRENDRA C B, et al. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions[J]. Chemsuschem, 2013, 6(9): 1745-1758. DOI: 10.1002/cssc.201300332.
[26] YAN X Y, JIN F M, TOHJI K, et al. Hydrothermal Conversion of Carbohydrate Biomass to Lactic Acid[J]. AIChE journal, 2010, 56(10): 2727-2733. DOI: 10.1002/ Aic.12193.
[27] ESPOSITO D, ANTONIETTI M. Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes[J]. Chemsuschem, 2013, 6(6): 989-992. DOI: 10.1002/cssc.201300092.
[28] LI L Y, SHEN F, SMITH R L, et al. Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature[J]. Green chemistry, 2017, 19(1): 76-81. DOI: 10.1039/ c6gc02443B.
[29] WANG F W, HUO Z B, WANG Y Q, et al. Hydrothermal conversion of cellulose into lactic acid with nickel catalyst[J]. Research on chemical intermediates, 2011, 37(2/5): 487-492. DOI: 10.1007/s11164-011-0274-2.
[30] ZHANG S P, JIN F M, HU J J, et al. Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions[J]. Bioresource technology, 2011, 102(2): 1998-2003. DOI: 10.1016/j.biortech.2010.09.049.
[31] HEDEGAARD R V, LIU L, SKIBSTED L H. Quantification of radicals formed during heating of β-lactoglobulin with glucose in aqueous ethanol[J]. Food chemistry, 2015, 167: 185-190. DOI: 10.1016/j.foodchem. 2014.06.118.
[32] LIU Y, LUO C, LIU H C. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst[J]. Angewandte chemie international edition, 2012, 51(13): 3249-3253. DOI: 10.1002/anie.201200351.
[33] BICKER M, ENDRES S, OTT L, et al. Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production[J]. Journal of molecular catalysis a: chemical, 2005, 239(1/2): 151-157. DOI: 10.1016/j.molcata.2005.06.017.
[34] WANG J, YAO G D, JIN F M. One-pot catalytic conversion of carbohydrates into alkyl lactates with Lewis acids in alcohols[J]. Molecular catalysis, 2017, 435: 82-90. DOI: 10.1016/j.mcat.2017.03.021.
[35] WANG Y L, DENG W P, WANG B J, et al. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water[J]. Nature communications, 2013, 4: 2141. DOI: 10.1038/Ncomms3141.
[36] Tang Z C, Deng W P, Wang Y L, et al. Transformation of cellulose and its derived carbohydrates into formic and cactic acids catalyzed by Vanadyl cations [J]. Chemsuschem, 2014, 7(6): 1557-1567. DOI: 10.1002/cssc.201400150.
[37] LEI X, WANG F F, LIU C L, et al. One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst[J]. Applied catalysis a: general, 2014, 482: 78-83. DOI: 10.1016/j.apcata.2014.05.029.
[38] NEMOTO K, HIRANO Y, HIRATA K I, et al. Cooperative in-sn catalyst system for efficient methyl lactate synthesis from biomass-derived sugars[J]. Applied catalysis B: environmental, 2016, 183: 8-17. DOI: 10.1016/j.apcatb.2015.10.015.
[39] ZHOU L P, WU L, LI H J, et al. A facile and efficient method to improve the selectivity of methyl lactate in the chemocatalytic conversion of glucose catalyzed by homogeneous Lewis acid[J]. Journal of Molecular Catalysis a-Chemical, 2014, 388: 74-80. DOI: 10.1016/ j.molcata.2014.01.017.
[40] DOS SANTOS J B, DE ALBUQUERQUE N J A, DE PAIVA E SILVA ZANTA C L, et al. Fructose conversion in the presence of Sn(IV) catalysts exhibiting high selectivity to lactic acid[J]. RSC advances, 2015, 5(110): 90952-90959. DOI: 10.1039/c5ra20881E.
[41] DENG W P, WANG P, WANG B J, et al. Transformation of cellulose and related carbohydrates into lactic acid with bifunctional Al(III)–Sn(II) catalysts[J]. Green chemistry, 2018, 20(3): 735-744. DOI: 10.1039/C7GC02975F.
[42] DONG W J, SHEN Z, PENG B Y, et al. Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a Zn-Sn-Beta Lewis acid-base catalyst [J]. Scientific Reports, 2016: 1-6. DOI: 10.1038/srep26713.
[43] YANG X M, BIAN J J, HUANG J H, et al. Fluoride-free and low concentration template synthesis of hierarchical Sn-Beta zeolites: efficient catalysts for conversion of glucose to alkyl lactate[J]. Green chemistry, 2017, 19(3): 692-701. DOI: 10.1039/c6gc02437H.
[44] ZHAO X L, WEN T, ZHANG J J, et al. Fe-Doped SnO2 catalysts with both BA and LA sites: facile preparation and biomass carbohydrates conversion to methyl lactate MLA[J]. RSC advances, 2017, 7(35): 21678-21685. DOI: 10.1039/c7ra01655G.
[45] WANG F F, LIU J, LI H, et al. Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K10[J]. Green chemistry, 2015, 17(4): 2455-2463. DOI: 10.1039/c4gc02131B.
[46] LI H, REN H F, ZHAO B W, et al. Production of lactic acid from cellulose catalyzed by alumina-supported Er2O3 catalysts[J]. Research on chemical intermediates, 2016, 42(9): 7199-7211. DOI: 10.1007/s11164-016-2529-4.
[47] JI N, ZHANG T, ZHENG M Y, et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angewandte chemie international edition, 2008, 47(44): 8510-8513. DOI: 10.1002/anie.200803233.
[48] ZHENG M Y, WANG A Q, JI N, et al. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. Chemsuschem, 2010, 3(1): 63-66. DOI: 10.1002/cssc.200900197.
[49] TAI Z J, ZHANG J Y, WANG A Q, et al. Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of raney Ni and tungstic acid[J]. Chemsuschem, 2013, 6(4): 652-658. DOI: 10.1002/cssc. 201200842.
[50] CHAMBON F, RATABOUL F, PINEL C, et al. Cellulose hydrothermal conversion promoted by heterogeneous Bronsted and Lewis acids: remarkable efficiency of solid Lewis acids to produce lactic acid[J]. Applied catalysis B: environmental, 2011, 105(1/2): 171-181. DOI: 10.1016/j.apcatb.2011.04.009.
[51] YANG L S, SU J, CARL S, et al. Catalytic conversion of hemicellulosic biomass to lactic acid in pH neutral aqueous phase media[J]. Applied catalysis B: environmental, 2015, 162: 149-157. DOI: 10.1016/j.apcatb.2014.06.025.
[52] SHI F, LIU J X, HUANG X, et al. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol- Water Solutions[J]. Chemsuschem, 2015, 9(1): 36-41. DOI: 10.1002/cssc.201500855.
[53] WATTANAPAPHAWONG P, REUBROYCHAROEN P, YAMAGUCHI A. Conversion of cellulose into lactic acid using zirconium oxide catalysts[J]. RSC advances, 2017, 7(30): 18561-18568. DOI: 10.1039/c6ra28568F.
[54] WATTANAPAPHAWONG P, SATO O, SATO K, et al. Conversion of cellulose to lactic acid by using ZrO2-Al2O3 catalysts[J]. Catalysts, 2017, 7(7): 221. DOI: 3390/catal7070221.
[55] COMAN S M, VERZIU M, TIRSOAGA A, et al. NbF5-AlF3 catalysts: design, synthesis, and application in lactic acid synthesis from cellulose[J]. ACS catalysis, 2015, 5(5): 3013-3026. DOI: 10.1021/acscatal.5b00282.
[56] QIAN X H. Mechanisms and Energetics for brønsted acid-catalyzed glucose condensation, dehydration and isomerization reactions[J]. Topics in catalysis, 2012, 55(3/4): 218-226. DOI: 10.1007/s11244-012-9790-6.
[57] CHOUDHARY V, MUSHRIF S H, HO C, et al. Insights into the interplay of lewis and brønsted acid catalysts in glucose and fructose conversion to 5-(Hydroxymethyl)- furfural and levulinic acid in aqueous Media[J]. Journal of the American chemical society, 2013, 135(10): 3997-4006. DOI: 10.1021/Ja3122763.
[58] MUSHRIF S H, VARGHESE J J, VLACHOS D G. Insights into the Cr(III) catalyzed isomerization mechanism of glucose to fructose in the presence of water using ab initio molecular dynamics[J]. Physical chemistry chemical physics, 2014, 16(36): 19564-19572. DOI: 10.1039/c4cp02095B.
[59] TANG J Q, GUO X W, ZHU L F, et al. Mechanistic study of glucose-to-fructose isomerization in water catalyzed by [Al(OH)2(aq)]+[J]. ACS catalysis, 2015, 5(9): 5097-5103. DOI: 10.1021/acscatal.5b01237.
[60] NGUYEN H, NIKOLAKIS V, VLACHOS D G. Mechanistic insights into lewis acid metal Salt-Catalyzed glucose chemistry in aqueous solution[J]. ACS catalysis, 2016, 6(3): 1497-1504. DOI: 10.1021/acscatal.5b02698.
[61] ROMÁN-LESHKOV Y, MOLINER M, LABINGER J A, et al. Mechanism of glucose isomerization using a solid lewis acid catalyst in water[J]. Angewandte chemie international edition, 2010, 49(47): 8954-8957. DOI: 10.1002/anie.201004689.
[62] CHOUDHARY V, PINAR A B, LOBO R F, et al. Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media[J]. Chemsuschem, 2013, 6(12): 2369-2376. DOI: 10.1002/cssc.201300328.
[63] BERMEJO-DEVAL R, GOUNDER R, DAVIS M E. Framework and extraframework tin sites in zeolite beta react glucose differently[J]. ACS catalysis, 2012, 2(12): 2705-2713. DOI: 10.1021/cs300474x.
[64] LI G N, PIDKO E A, HENSEN E J M. Synergy between Lewis acid sites and hydroxyl groups for the isomerization of glucose to fructose over Sn-containing zeolites: a theoretical perspective[J]. Catalysis science & technology, 2014, 4(8): 2241-2250. DOI: 10.1039/ c4cy00186A.
[65] RAI N, CARATZOULAS S, VLACHOS D G. Role of silanol group in Sn-Beta zeolite for glucose isomerization and epimerization reactions[J]. ACS catalysis, 2013, 3(10): 2294-2298. DOI: 10.1021/cs400476n.
[66] YANG G, PIDKO E A, HENSEN E J M. The Mechanism of glucose isomerization to fructose over Sn-BEA zeolite: a periodic density functional theory study[J]. Chemsuschem, 2013, 6(9): 1688-1696. DOI: 10.1002/ cssc.201300342.
[67] LI G N, PIDKO E A, HENSEN E J M. A periodic DFT study of glucose to fructose isomerization on tungstite (WO3?H2O): influence of group IV-VI dopants and cooperativity with hydroxyl groups[J]. ACS catalysis, 2016, 6(7): 4162-4169. DOI: 10.1021/acscatal.6b00869.