欢迎访问《新能源进展》官方网站!今天是
论文

生物质基碳水化合物催化转化制备乳酸的研究进展

  • 石 宁 ,
  • 唐石云 ,
  • 罗文艳 ,
  • 杨嘉鹏 ,
  • 马 博 ,
  • 骆钱江
展开
  • 1. 贵州理工学院,化学工程学院,贵阳 550003;
    2. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640

收稿日期: 2018-01-08

  修回日期: 2018-03-22

  网络出版日期: 2018-04-28

基金资助

广东省新能源和可再生能源研究开发与应用重点实验室开放基金项目(Y607sc1001)

Advances in Catalytic Conversion of Biomass Derived Carbohydrates into Lactic Acid

  • SHI Ning ,
  • TANG Shi-yun ,
  • LUO Wen-yan ,
  • YANG Jia-peng ,
  • MA Bo ,
  • LUO Qian-jiang
Expand
  • 1. School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China;
    2. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China

Received date: 2018-01-08

  Revised date: 2018-03-22

  Online published: 2018-04-28

摘要

生物质基碳水化合物(纤维素、淀粉、葡萄糖、果糖等)是自然界最丰富的可再生资源,将其用于生产人类生存所必需的有机化学品是当前的一个重要研究方向。其中,将生物质催化转化为乳酸及其衍生化学品是生物质高值利用的途径之一,并在近年的研究中取得了显著进展。本文对生物质基糖类催化转化制备乳酸进行了详细的总结和评述,着重分析了葡萄糖转化为乳酸的转化过程及催化剂研究,讨论了葡萄糖异构化及果糖逆醛醇反应的催化剂机理,并对今后该领域的研究前景进行了展望。

本文引用格式

石 宁 , 唐石云 , 罗文艳 , 杨嘉鹏 , 马 博 , 骆钱江 . 生物质基碳水化合物催化转化制备乳酸的研究进展[J]. 新能源进展, 2018 , 6(2) : 102 -112 . DOI: 10.3969/j.issn.2095-560X.2018.02.004

Abstract

Biomass derived carbohydrates (cellulose, starch, glucose, fructose) is the most abundant renewable resource, which is also viewed as carbon source for producing liquid fuel and platform chemicals in the future. Selectively convert the biomass resources into lactic acid and lactate with some catalysts under hydrothermal condition is one route for higher value application of biomass resources. This paper reviewed some recent research advances in the catalytic synthesis of lactic acid from carbohydrates, with an emphasis on the chemical reaction process and the catalysts. The isomerization mechanics of glucose and retro-aldol condensation mechanism of fructose were discussed. The future research tendency in this field was concluded.

参考文献

[1] GALLEZOT P. Conversion of biomass to selected chemical products[J]. Chemical society reviews, 2012, 41(4): 1538-1558. DOI: 10.1039/C1cs15147A.
[2] WANG F F, LIU C L, DONG W S. Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts[J]. Green chemistry, 2013, 15(8): 2091-2095. DOI: 10.1039/C3gc40836A.
[3] SHI N, LIU Q Y, ZHANG Q, et al. High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system[J]. Green chemistry, 2013, 15(7): 1967-1974. DOI: 10.1039/ C3gc40667A.
[4] LI G Y, LI N, YANG J F, et al. Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose[J]. Bioresource technology, 2013, 134: 66-72. DOI: 10.1016/j.biortech.2013.01.116.
[5] ROMÁN-LESHKOV Y, BARRETT C J, DUMESIC J A, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature, 2007, 447(7147): 982-985. DOI: 10.1038/nature05923.
[6] KUNKES E L, SIMONETTI D A, WEST R M, et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes[J]. Science, 2008, 322(5900): 417-421. DOI: 10.1126/science.1159210.
[7] EERHART A J J E, FAAIJ A P C, PATEL M K. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance[J]. Energy & environmental science, 2012, 5(4): 6407-6422. DOI: 10.1039/C2ee02480B.
[8] VAN PUTTEN R J, VAN DER WAAL J C, DE JONG E, et al. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources [J]. Chemical Reviews, 2013, 113(3): 1499-1597. DOI: 10.1021/Cr300182k.
[9] MAKI-ARVELA P, SIMAKOVA I L, SALMI T, et al. Production of lactic Acid/Lactates from biomass and their catalytic transformations to commodities[J]. Chemical reviews, 2014, 114(3): 1909-1971. DOI: 10.1021/cr400203v.
[10] ZHANG Z R, SONG J L, HAN B X. Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids [J]. Chemical Reviews, 2017, 117(10): 6834-6880. DOI: 10.1021/acs.chemrev. 6b00457.
[11] FAN Y X, ZHOU C H, ZHU X H. Selective catalysis of lactic acid to produce commodity chemicals[J]. Catalysis reviews: science and engineering, 2009, 51(3): 293-324. DOI: 10.1080/01614940903048513.
[12] KROCHTA J M, TILLIN S J, HUDSON J S. Degradation of polysaccharides in alkaline solution to organic acids: product characterization and identification[J]. Journal of applied polymer science, 1987, 33(4): 1413-1425. DOI: 10.1002/app.1987.070330428.
[13] ANTAL M J JR, MOK W S L, RICHARDS G N. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose[J]. Carbohydrate research, 1990, 199(1): 91-109. DOI: 10.1016/0008-6215(90)84096-D.
[14] RASRENDRA C B, FACHRI B A, MAKERTIHARTHA I G B N, et al. Catalytic conversion of dihydroxyacetone to lactic acid using metal salts in water[J]. Chemsuschem, 2011, 4(6): 768-777. DOI: 10.1002/cssc.201000457.
[15] DENG W P, ZHANG Q H, WANG Y. Catalytic transformations of cellulose and its derived carbohydrates into 5-hydroxymethylfurfural, levulinic acid, and lactic acid[J]. Science China chemistry, 2015, 58(1): 29-46. DOI: 10.1007/s11426-014-5283-8.
[16] WANG X C, LIANG F B, HUANG C P, et al. Siliceous tin phosphates as effective bifunctional catalysts for selective conversion of dihydroxyacetone to lactic acid [J]. Catalysis Science & Technology, 2016, 6(17): 6551-6560. DOI: 10.1039/c6cy00553e.
[17] SROKOL Z, BOUCHE A G, VAN ESTRIK A, et al. Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds[J]. Carbohydrate research, 2004, 339(10): 1717-1726. DOI: 10.1016/j.carres.2004.04.018.
[18] LIU Z, LI W, PAN C Y, et al. Conversion of biomass-derived carbohydrates to methyl lactate using solid base catalysts[J]. Catalysis communications, 2011, 15(1): 82-87. DOI: 10.1016/j.catcom.2011.08.019.
[19] VERMA D, INSYANI R, SUH Y, et al. Direct conversion of cellulose to high-yield methyl lactate over Ga-doped Zn/H-nanozeolite Y catalysts in supercritical methanol [J]. Green Chemistry, 2017, 19(8): 1969-1982. DOI: 10.1039/c7gc00432j.
[20] DE CLIPPEL F, DUSSELIER M, VAN ROMPAEY R, et al. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts[J]. Journal of the American chemical society, 2012, 134(24): 10089-10101. DOI: 10.1021/Ja301678w.
[21] YANG L S, YANG X K, TIAN E, et al. Mechanistic insights into the production of methyl lactate by catalytic conversion of carbohydrates on mesoporous Zr-SBA-15[J]. Journal of catalysis, 2016, 333: 207-216. DOI: 10.1016/j.jcat.2015.10.013.
[22] HOLM M S, SARAVANAMURUGAN S, TAARNING E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts[J]. Science, 2010, 328(5978): 602-605. DOI: 10.1126/science.1183990.
[23] WANG A Q, ZHANG T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Accounts of chemical research, 2013, 46(7): 1377-1386. DOI: 10.1021/Ar3002156.
[24] ZHAO H B, HOLLADAY J E, BROWN H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science, 2007, 316(5831): 1597-1600. DOI: 10.1126/science.1141199.
[25] VAN ZANDVOORT I, WANG Y H, RASRENDRA C B, et al. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions[J]. Chemsuschem, 2013, 6(9): 1745-1758. DOI: 10.1002/cssc.201300332.
[26] YAN X Y, JIN F M, TOHJI K, et al. Hydrothermal Conversion of Carbohydrate Biomass to Lactic Acid[J]. AIChE journal, 2010, 56(10): 2727-2733. DOI: 10.1002/ Aic.12193.
[27] ESPOSITO D, ANTONIETTI M. Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes[J]. Chemsuschem, 2013, 6(6): 989-992. DOI: 10.1002/cssc.201300092.
[28] LI L Y, SHEN F, SMITH R L, et al. Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature[J]. Green chemistry, 2017, 19(1): 76-81. DOI: 10.1039/ c6gc02443B.
[29] WANG F W, HUO Z B, WANG Y Q, et al. Hydrothermal conversion of cellulose into lactic acid with nickel catalyst[J]. Research on chemical intermediates, 2011, 37(2/5): 487-492. DOI: 10.1007/s11164-011-0274-2.
[30] ZHANG S P, JIN F M, HU J J, et al. Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions[J]. Bioresource technology, 2011, 102(2): 1998-2003. DOI: 10.1016/j.biortech.2010.09.049.
[31] HEDEGAARD R V, LIU L, SKIBSTED L H. Quantification of radicals formed during heating of β-lactoglobulin with glucose in aqueous ethanol[J]. Food chemistry, 2015, 167: 185-190. DOI: 10.1016/j.foodchem. 2014.06.118.
[32] LIU Y, LUO C, LIU H C. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst[J]. Angewandte chemie international edition, 2012, 51(13): 3249-3253. DOI: 10.1002/anie.201200351.
[33] BICKER M, ENDRES S, OTT L, et al. Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production[J]. Journal of molecular catalysis a: chemical, 2005, 239(1/2): 151-157. DOI: 10.1016/j.molcata.2005.06.017.
[34] WANG J, YAO G D, JIN F M. One-pot catalytic conversion of carbohydrates into alkyl lactates with Lewis acids in alcohols[J]. Molecular catalysis, 2017, 435: 82-90. DOI: 10.1016/j.mcat.2017.03.021.
[35] WANG Y L, DENG W P, WANG B J, et al. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water[J]. Nature communications, 2013, 4: 2141. DOI: 10.1038/Ncomms3141.
[36] Tang Z C, Deng W P, Wang Y L, et al. Transformation of cellulose and its derived carbohydrates into formic and cactic acids catalyzed by Vanadyl cations [J]. Chemsuschem, 2014, 7(6): 1557-1567. DOI: 10.1002/cssc.201400150.
[37] LEI X, WANG F F, LIU C L, et al. One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst[J]. Applied catalysis a: general, 2014, 482: 78-83. DOI: 10.1016/j.apcata.2014.05.029.
[38] NEMOTO K, HIRANO Y, HIRATA K I, et al. Cooperative in-sn catalyst system for efficient methyl lactate synthesis from biomass-derived sugars[J]. Applied catalysis B: environmental, 2016, 183: 8-17. DOI: 10.1016/j.apcatb.2015.10.015.
[39] ZHOU L P, WU L, LI H J, et al. A facile and efficient method to improve the selectivity of methyl lactate in the chemocatalytic conversion of glucose catalyzed by homogeneous Lewis acid[J]. Journal of Molecular Catalysis a-Chemical, 2014, 388: 74-80. DOI: 10.1016/ j.molcata.2014.01.017.
[40] DOS SANTOS J B, DE ALBUQUERQUE N J A, DE PAIVA E SILVA ZANTA C L, et al. Fructose conversion in the presence of Sn(IV) catalysts exhibiting high selectivity to lactic acid[J]. RSC advances, 2015, 5(110): 90952-90959. DOI: 10.1039/c5ra20881E.
[41] DENG W P, WANG P, WANG B J, et al. Transformation of cellulose and related carbohydrates into lactic acid with bifunctional Al(III)–Sn(II) catalysts[J]. Green chemistry, 2018, 20(3): 735-744. DOI: 10.1039/C7GC02975F.
[42] DONG W J, SHEN Z, PENG B Y, et al. Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a Zn-Sn-Beta Lewis acid-base catalyst [J]. Scientific Reports, 2016: 1-6. DOI: 10.1038/srep26713.
[43] YANG X M, BIAN J J, HUANG J H, et al. Fluoride-free and low concentration template synthesis of hierarchical Sn-Beta zeolites: efficient catalysts for conversion of glucose to alkyl lactate[J]. Green chemistry, 2017, 19(3): 692-701. DOI: 10.1039/c6gc02437H.
[44] ZHAO X L, WEN T, ZHANG J J, et al. Fe-Doped SnO2 catalysts with both BA and LA sites: facile preparation and biomass carbohydrates conversion to methyl lactate MLA[J]. RSC advances, 2017, 7(35): 21678-21685. DOI: 10.1039/c7ra01655G.
[45] WANG F F, LIU J, LI H, et al. Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K10[J]. Green chemistry, 2015, 17(4): 2455-2463. DOI: 10.1039/c4gc02131B.
[46] LI H, REN H F, ZHAO B W, et al. Production of lactic acid from cellulose catalyzed by alumina-supported Er2O3 catalysts[J]. Research on chemical intermediates, 2016, 42(9): 7199-7211. DOI: 10.1007/s11164-016-2529-4.
[47] JI N, ZHANG T, ZHENG M Y, et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angewandte chemie international edition, 2008, 47(44): 8510-8513. DOI: 10.1002/anie.200803233.
[48] ZHENG M Y, WANG A Q, JI N, et al. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. Chemsuschem, 2010, 3(1): 63-66. DOI: 10.1002/cssc.200900197.
[49] TAI Z J, ZHANG J Y, WANG A Q, et al. Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of raney Ni and tungstic acid[J]. Chemsuschem, 2013, 6(4): 652-658. DOI: 10.1002/cssc. 201200842.
[50] CHAMBON F, RATABOUL F, PINEL C, et al. Cellulose hydrothermal conversion promoted by heterogeneous Bronsted and Lewis acids: remarkable efficiency of solid Lewis acids to produce lactic acid[J]. Applied catalysis B: environmental, 2011, 105(1/2): 171-181. DOI: 10.1016/j.apcatb.2011.04.009.
[51] YANG L S, SU J, CARL S, et al. Catalytic conversion of hemicellulosic biomass to lactic acid in pH neutral aqueous phase media[J]. Applied catalysis B: environmental, 2015, 162: 149-157. DOI: 10.1016/j.apcatb.2014.06.025.
[52] SHI F, LIU J X, HUANG X, et al. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol- Water Solutions[J]. Chemsuschem, 2015, 9(1): 36-41. DOI: 10.1002/cssc.201500855.
[53] WATTANAPAPHAWONG P, REUBROYCHAROEN P, YAMAGUCHI A. Conversion of cellulose into lactic acid using zirconium oxide catalysts[J]. RSC advances, 2017, 7(30): 18561-18568. DOI: 10.1039/c6ra28568F.
[54] WATTANAPAPHAWONG P, SATO O, SATO K, et al. Conversion of cellulose to lactic acid by using ZrO2-Al2O3 catalysts[J]. Catalysts, 2017, 7(7): 221.  DOI: 3390/catal7070221.
[55] COMAN S M, VERZIU M, TIRSOAGA A, et al. NbF5-AlF3 catalysts: design, synthesis, and application in lactic acid synthesis from cellulose[J]. ACS catalysis, 2015, 5(5): 3013-3026. DOI: 10.1021/acscatal.5b00282.
[56] QIAN X H. Mechanisms and Energetics for brønsted acid-catalyzed glucose condensation, dehydration and isomerization reactions[J]. Topics in catalysis, 2012, 55(3/4): 218-226. DOI: 10.1007/s11244-012-9790-6.
[57] CHOUDHARY V, MUSHRIF S H, HO C, et al. Insights into the interplay of lewis and brønsted acid catalysts in glucose and fructose conversion to 5-(Hydroxymethyl)- furfural and levulinic acid in aqueous Media[J]. Journal of the American chemical society, 2013, 135(10): 3997-4006. DOI: 10.1021/Ja3122763.
[58] MUSHRIF S H, VARGHESE J J, VLACHOS D G. Insights into the Cr(III) catalyzed isomerization mechanism of glucose to fructose in the presence of water using ab initio molecular dynamics[J]. Physical chemistry chemical physics, 2014, 16(36): 19564-19572. DOI: 10.1039/c4cp02095B.
[59] TANG J Q, GUO X W, ZHU L F, et al. Mechanistic study of glucose-to-fructose isomerization in water catalyzed by [Al(OH)2(aq)]+[J]. ACS catalysis, 2015, 5(9): 5097-5103. DOI: 10.1021/acscatal.5b01237.
[60] NGUYEN H, NIKOLAKIS V, VLACHOS D G. Mechanistic insights into lewis acid metal Salt-Catalyzed glucose chemistry in aqueous solution[J]. ACS catalysis, 2016, 6(3): 1497-1504. DOI: 10.1021/acscatal.5b02698.
[61] ROMÁN-LESHKOV Y, MOLINER M, LABINGER J A, et al. Mechanism of glucose isomerization using a solid lewis acid catalyst in water[J]. Angewandte chemie international edition, 2010, 49(47): 8954-8957. DOI: 10.1002/anie.201004689.
[62] CHOUDHARY V, PINAR A B, LOBO R F, et al. Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media[J]. Chemsuschem, 2013, 6(12): 2369-2376. DOI: 10.1002/cssc.201300328.
[63] BERMEJO-DEVAL R, GOUNDER R, DAVIS M E. Framework and extraframework tin sites in zeolite beta react glucose differently[J]. ACS catalysis, 2012, 2(12): 2705-2713. DOI: 10.1021/cs300474x.
[64] LI G N, PIDKO E A, HENSEN E J M. Synergy between Lewis acid sites and hydroxyl groups for the isomerization of glucose to fructose over Sn-containing zeolites: a theoretical perspective[J]. Catalysis science & technology, 2014, 4(8): 2241-2250. DOI: 10.1039/ c4cy00186A.
[65] RAI N, CARATZOULAS S, VLACHOS D G. Role of silanol group in Sn-Beta zeolite for glucose isomerization and epimerization reactions[J]. ACS catalysis, 2013, 3(10): 2294-2298. DOI: 10.1021/cs400476n.
[66] YANG G, PIDKO E A, HENSEN E J M. The Mechanism of glucose isomerization to fructose over Sn-BEA zeolite: a periodic density functional theory study[J]. Chemsuschem, 2013, 6(9): 1688-1696. DOI: 10.1002/ cssc.201300342.
[67] LI G N, PIDKO E A, HENSEN E J M. A periodic DFT study of glucose to fructose isomerization on tungstite (WO3?H2O): influence of group IV-VI dopants and cooperativity with hydroxyl groups[J]. ACS catalysis, 2016, 6(7): 4162-4169. DOI: 10.1021/acscatal.6b00869.
文章导航

/