欢迎访问《新能源进展》官方网站!今天是
论文

压缩空气储能技术现状与发展趋势

  • 张建军 ,
  • 周盛妮 ,
  • 李帅旗 ,
  • 宋文吉 ,
  • 冯自平
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院大学,北京 100049;
    3. 中科院可再生能源重点实验室,广州 510640;
    4. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640
张建军(1973-),男,硕士,副研究员,主要从事物理储能技术研究。

收稿日期: 2018-01-31

  修回日期: 2018-03-05

  网络出版日期: 2018-04-28

基金资助

国家重点研发计划资助项目(2017YFB0903605);
广东省科技计划项目(2013B091300018)

Overview and Development Tendency of Compressed Air Energy Storage

  • ZHANG Jian-jun ,
  • ZHOU Sheng-ni ,
  • LI Shuai-qi ,
  • SONG Wen-ji ,
  • FENG Zi-ping
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    4. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China

Received date: 2018-01-31

  Revised date: 2018-03-05

  Online published: 2018-04-28

摘要

在分析传统压缩空气储能(CAES)技术的工作原理和技术特点的基础上,介绍了压缩空气储能技术的发展,包括非绝热压缩空气储能技术(D-CAES)、绝热压缩空气储能技术(A-CAES)、液化空气储能技术(LAES)和超临界压缩空气储能技术(SC-CAES)等,并给出了评价不同系统性能的技术参数。以国际上第一座压缩空气储能电站——德国Huntorf电站的运行参数和相关情况为例,分析了D-CAES技术的应用情况;对压缩空气储能技术在美国及其他国家和地区的应用和发展现状进行分析。通过对比不同的压缩空气储能技术方案,分析了A-CAES、LAES、SC-CAES及LCES储能系统的先进性、竞争优势与不足,分析了未来CAES技术的发展趋势。

本文引用格式

张建军 , 周盛妮 , 李帅旗 , 宋文吉 , 冯自平 . 压缩空气储能技术现状与发展趋势[J]. 新能源进展, 2018 , 6(2) : 140 -150 . DOI: 10.3969/j.issn.2095-560X.2018.02.008

Abstract

This article reviews the developments of compressed air energy storage (CAES) technologies according to the working principle and technology characteristics of traditional compressed air energy storage technology. The CAES technologies generally include diabatic compressed air energy storage (D-CAES), adiabatic compressed air energy storage (A-CAES), liquid air energy storage (LAES) and supercritical compressed air energy storage (SC-CAES). Performance parameters of these CAES systems were discussed in this paper. The application of D-CAES system, including the running parameters and round trip efficiency, was analyzed based on the first CAES plant in Huntorf; then the application and development of CAES in the US and other countries and areas were presented. The development tendency of CAES was discussed based on the comparison of advantages and shortcomings of different CAES technologies such as A-CAES, LAES, SC-CAES.

参考文献

[1] NEWMAN E D. A thermodynamic and economic analysis of compressed air energy storage for electric utilities[D]. Kingston, Ontario, Canada: Queen's University, 1975.
[2] LEE K H. Analytical and experimental study of underground compressed air energy storage[D]. West Lafayette, IN: Purdue University, 1980.
[3] PIMM A, GARVEY S D. Underwater Compressed air energy storage[M]//LETCHER T. Storing Energy. Amsterdam: Elsevier Inc., 2016: 135-154. DOI: 10.1016/ B978-0-12-803440-8.00007-5.
[4] BARNES F S, BUDD D A, LIM M, et al. Compressed air energy storage (CAES)[M]//YAN J. Handbook of Clean Energy Systems. Chichester: John Wiley & Sons, Ltd., 2015: 1-26. DOI: 10.1002/9781118991978.hces143.
[5] HAMEER S, VAN NIEKERK J L. A review of large-scale electrical energy storage[J]. International journal of energy research, 2015, 39(9): 1179-1196. DOI: 10.1002/er.3294.
[6] BARBOUR E, WILSON I A G, RADCLIFFE J, et al. A review of pumped hydro energy storage development in significant international electricity markets[J]. Renewable and sustainable energy reviews, 2016, 61: 421-432. DOI: 10.1016/j.rser.2016.04.019.
[7] VENKATARAMANI G, PARANKUSAM P, RAMALINGAM V, et al. A review on compressed air energy storage–A pathway for smart grid and polygeneration[J]. Renewable and sustainable energy reviews, 2016, 62: 895-907. DOI: 10.1016/j.rser.2016.05.002.
[8] BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied energy, 2016, 170: 250-268. DOI: 10.1016/j.apenergy.2016.02.108.
[9] SAIDUR R, RAHIM N A, HASANUZZAMAN M. A review on compressed-air energy use and energy savings[J]. Renewable and sustainable energy reviews, 2010, 14(4): 1135-1153. DOI: 10.1016/j.rser.2009.11.013.
[10] 余耀, 孙华, 许俊斌, 等. 压缩空气储能技术综述[J]. 国内外动态, 2012(1): 68-74.
[11] 陈海生, 刘金超, 郭欢, 等. 压缩空气储能技术原理[J]. 储能科学与技术, 2013, 2(2): 146-151. DOI: 10.3969/ j.issn.2095-4239.2013.02.008.
[12] 张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1(1): 26-40.
[13] 傅昊, 张毓颖, 崔岩, 等. 压缩空气储能技术研究进展[J]. 科技导报, 2016, 34(23): 81-87. DOI: 10.3981/ j.issn.1000-7857.2016.23.008.
[14] 李小仨, 钱则刚, 杨启超, 等. 压缩空气储能技术现状分析[J]. 流体机械, 2013, 41(8): 40-44. DOI: 10.3969/ j.issn.1005-0329.2013.08.009.
[15] 梅生伟, 薛小代, 陈来军. 压缩空气储能技术及其应用探讨[J]. 南方电网技术, 2016, 10(3): 11-15, 31. DOI: 10.13648/j.cnki.issn1674-0629.2016.03.002.
[16] 陈海生. 压缩空气储能技术的特点与发展趋势[J]. 高科技与产业化, 2011(6): 55-56.
[17] ORTEGA-FERNÁNDEZ I, ZAVATTONI S A, RODRÍGUEZ-ASEGUINOLAZA J, et al. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology[J]. Applied energy, 2017, 205: 280-293. DOI: 10.1016/j.apenergy.2017.07.039.
[18] LIU X H, ZHANG Y F, SHEN J, et al. Characteristics of air cooling for cold storage and power recovery of compressed air energy storage (CAES) with inter- cooling[J]. Applied thermal engineering, 2016, 107: 1-9. DOI: 10.1016/j.applthermaleng.2016.06.064.
[19] GUO C B, PAN L H, ZHANG K N, et al. Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant[J]. Applied energy, 2016, 181: 342-356. DOI: 10.1016/j.apenergy. 2016.08.105.
[20] BUDTA M, WOLFB D, SPAN R, et al. Compressed air energy storage – An option for medium to large scale electrical-energy storage[J]. Energy procedia, 2016, 88: 698-702. DOI: 10.1016/j.egypro.2016.06.046.
[21] CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system: a critical review[J]. Progress in natural science, 2016, 19(3): 291-312. DOI: 10.1016/j.pnsc.2008.07.014.
[22] MAHLIA T M I, SAKTISAHDAN T J, JANNIFAR A, et al. A review of available methods and development on energy storage; technology update[J]. Renewable and sustainable energy reviews, 2014, 33: 532-545. DOI: 10.1016/j.rser.2014.01.068.
[23] SAFAEI H, KEITH D W. Compressed air energy storage with waste heat export: An Alberta case study[J]. Energy conversion and management, 2014, 78: 114-124. DOI: 10.1016/j.enconman.2013.10.043.
[24] BARBOUR E, MIGNARD D, DING Y L, et al. Adiabatic compressed air energy storage with packed bed thermal energy storage[J]. Applied energy, 2015, 155: 804-815. DOI: 10.1016/j.apenergy.2015.06.019.
[25] LIU J L, WANG J H. A comparative research of two adiabatic compressed air energy storage systems[J]. Energy conversion and management, 2016, 108: 566-578. DOI: 10.1016/j.enconman.2015.11.049.
[26] MAZLOUM Y, SAYAH H, NEMER M. Dynamic modeling and simulation of an Isobaric Adiabatic Compressed Air Energy Storage (IA-CAES) system[J]. Journal of energy storage, 2017, 11: 178-190. DOI: 10.1016/j.est.2017.03.006.
[27] SCIACOVELLI A, LI Y l, CHEN H S, et al. Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance[J]. Applied energy, 2017, 185: 16-28. DOI: 10.1016/j.apenergy. 2016.10.058.
[28] CHEN L X, HU P, ZHAO P P, et al. A novel throttling strategy for adiabatic compressed air energy storage system based on an ejector[J]. Energy conversion and management, 2018, 158: 50-59. DOI: 10.1016/j.enconman. 2017.12.055.
[29] TOLA V, MELONI V, SPADACCINI F, et al. Performance assessment of Adiabatic Compressed Air Energy Storage (A-CAES) power plants integrated with packed-bed thermocline storage systems[J]. Energy conversion and management, 2017, 151: 343-356. DOI: 10.1016/j.enconman.2017.08.051.
[30] KIM M J, KIM T S. Feasibility study on the influence of steam injection in the compressed air energy storage system[J]. Energy, 2017, 141: 239-249. DOI: 10.1016/ j.energy.2017.09.078.
[31] ANTONELLI M, BARSALI S, DESIDERI U, et al. Liquid air energy storage: Potential and challenges of hybrid power plants[J]. Applied energy, 2017, 194: 522-529. DOI: 10.1016/j.apenergy.2016.11.091.
[32] ANTONELLIA M, DESIDERIA U, GIGLIOLIA R, et al. Liquid air energy storage: a potential low emissions and efficient storage system[J]. Applied energy symposium and summit 2016, 88: 693-697. DOI: 10.1016/j.egypro. 2016.06.100.
[33] DING Y, TONG L, ZHANG P, et al. Liquid air energy storage[M]//LETCHER T. Storing Energy. Amsterdam: Elsevier Inc., 2016: 167-181. DOI: 10.1016/B978-0-12- 803440-8.00009-9.
[34] MORGAN R, NELMES S, GIBSON E, et al. Liquid air energy storage – Analysis and first results from a pilot scale demonstration plant[J]. Applied energy, 2015, 137: 845-853. DOI: 10.1016/j.apenergy.2014.07.109.
[35] PIMM A J, GARVEY S D, KANTHARAJ B. Economic analysis of a hybrid energy storage system based on liquid air and compressed air[J]. Journal of energy storage, 2015, 4: 24-35. DOI: 10.1016/j.est.2015.09.002.
[36] AMEEL B, T’JOEN C, DE KERPEL K, et al. Thermodynamic analysis of energy storage with a liquid air Rankine cycle[J]. Applied thermal engineering, 2013, 52(1): 130-140. DOI: 10.1016/j.applthermaleng.2012.11.037.
[37] GUIZZI G L, MANNO M, TOLOMEI L M, et al. Thermodynamic analysis of a liquid air energy storage system[J]. Energy, 2015, 93: 1639-1647. DOI: 10.1016/ j.energy.2015.10.030.
[38] KANTHARAJ B, GARVEY S, PIMM A. Compressed air energy storage with liquid air capacity extension[J]. Applied energy, 2015, 157: 152-165. DOI: 10.1016/j. apenergy.2015.07.076.
[39] GUO H, XU Y J, CHEN H S, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy conversion and management, 2016, 115: 167-177. DOI: 10.1016/j.enconman.2016.01.051.
[40] GUO H, XU Y J, CHEN H S, et al. Corresponding-point methodology for physical energy storage system analysis and application to compressed air energy storage system[J]. Energy, 2018, 143: 772-784. DOI: 10.1016/ j.energy.2017.10.132.
[41] GUO H, XU Y J, CHEN H S, et al. Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system[J]. Applied energy, 2017, 199: 96-106. DOI: 10.1016/j.apenergy.2017.04.068.
[42] PAN L S, LI B, WEI X L, et al. Experimental investigation on the CO2 transcritical power cycle[J]. Energy, 2016, 95: 247-254. DOI: 10.1016/j.energy.2015.11.074.
[43] KIM Y M, SHIN D G, LEE S Y, et al. Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage[J]. Energy, 2013, 49: 484-501. DOI: 10.1016/j.energy.2012.09.057.
[44] WANG M K, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied thermal engineering, 2015, 91: 812-823. DOI: 10.1016/j.applthermaleng.2015.08.081.
[45] AKBARI A D, MAHMOUDI S M S. Thermoeconomic performance and optimization of a novel cogeneration system using carbon dioxide as working fluid[J]. Energy conversion and management, 2017, 145: 265-277. DOI: 10.1016/j.enconman.2017.04.103.
[46] KANTHARAJ B, GARVEY S, PIMM A. Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air[J]. Sustainable energy technologies and assessments, 2015, 11: 159-164. DOI: 10.1016/j.seta.2014.11.002.
[47] XUEA X D, WANGA S X, ZHANGA X L, et al. Thermodynamic analysis of a novel liquid air energy storage system[J]. Physics procedia, 2015, 67: 733-738. DOI: 10.1016/j.phpro.2015.06.124.
[48] PENG H, YANG Y, LI R, et al. Thermodynamic analysis of an improved adiabatic compressed air energy storage system[J]. Applied energy, 2016, 183: 1361-1373. DOI: 10.1016/j.apenergy.2016.09.102.
[49] ZHAO P, WANG J F, DAI Y P. Thermodynamic analysis of an integrated energy system based on compressed air energy storage (CAES) system and Kalina cycle[J]. Energy conversion and management, 2015, 98: 161-172. DOI: 10.1016/j.enconman.2015.03.094.
[50] LUO X, WANG J H, DOONER M, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied energy, 2015, 137: 511-536. DOI: 10.1016/j.apenergy.2014.09.081.
[51] LUO X, WANG J H, DOONER M, et al. Overview of current development in compressed air energy storage technology[J]. Energy procedia, 2014, 62: 603-611. DOI: 10.1016/j.egypro.2014.12.423.
文章导航

/