[1] NEWMAN E D. A thermodynamic and economic analysis of compressed air energy storage for electric utilities[D]. Kingston, Ontario, Canada: Queen's University, 1975.
[2] LEE K H. Analytical and experimental study of underground compressed air energy storage[D]. West Lafayette, IN: Purdue University, 1980.
[3] PIMM A, GARVEY S D. Underwater Compressed air energy storage[M]//LETCHER T. Storing Energy. Amsterdam: Elsevier Inc., 2016: 135-154. DOI: 10.1016/ B978-0-12-803440-8.00007-5.
[4] BARNES F S, BUDD D A, LIM M, et al. Compressed air energy storage (CAES)[M]//YAN J. Handbook of Clean Energy Systems. Chichester: John Wiley & Sons, Ltd., 2015: 1-26. DOI: 10.1002/9781118991978.hces143.
[5] HAMEER S, VAN NIEKERK J L. A review of large-scale electrical energy storage[J]. International journal of energy research, 2015, 39(9): 1179-1196. DOI: 10.1002/er.3294.
[6] BARBOUR E, WILSON I A G, RADCLIFFE J, et al. A review of pumped hydro energy storage development in significant international electricity markets[J]. Renewable and sustainable energy reviews, 2016, 61: 421-432. DOI: 10.1016/j.rser.2016.04.019.
[7] VENKATARAMANI G, PARANKUSAM P, RAMALINGAM V, et al. A review on compressed air energy storage–A pathway for smart grid and polygeneration[J]. Renewable and sustainable energy reviews, 2016, 62: 895-907. DOI: 10.1016/j.rser.2016.05.002.
[8] BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied energy, 2016, 170: 250-268. DOI: 10.1016/j.apenergy.2016.02.108.
[9] SAIDUR R, RAHIM N A, HASANUZZAMAN M. A review on compressed-air energy use and energy savings[J]. Renewable and sustainable energy reviews, 2010, 14(4): 1135-1153. DOI: 10.1016/j.rser.2009.11.013.
[10] 余耀, 孙华, 许俊斌, 等. 压缩空气储能技术综述[J]. 国内外动态, 2012(1): 68-74.
[11] 陈海生, 刘金超, 郭欢, 等. 压缩空气储能技术原理[J]. 储能科学与技术, 2013, 2(2): 146-151. DOI: 10.3969/ j.issn.2095-4239.2013.02.008.
[12] 张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1(1): 26-40.
[13] 傅昊, 张毓颖, 崔岩, 等. 压缩空气储能技术研究进展[J]. 科技导报, 2016, 34(23): 81-87. DOI: 10.3981/ j.issn.1000-7857.2016.23.008.
[14] 李小仨, 钱则刚, 杨启超, 等. 压缩空气储能技术现状分析[J]. 流体机械, 2013, 41(8): 40-44. DOI: 10.3969/ j.issn.1005-0329.2013.08.009.
[15] 梅生伟, 薛小代, 陈来军. 压缩空气储能技术及其应用探讨[J]. 南方电网技术, 2016, 10(3): 11-15, 31. DOI: 10.13648/j.cnki.issn1674-0629.2016.03.002.
[16] 陈海生. 压缩空气储能技术的特点与发展趋势[J]. 高科技与产业化, 2011(6): 55-56.
[17] ORTEGA-FERNÁNDEZ I, ZAVATTONI S A, RODRÍGUEZ-ASEGUINOLAZA J, et al. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology[J]. Applied energy, 2017, 205: 280-293. DOI: 10.1016/j.apenergy.2017.07.039.
[18] LIU X H, ZHANG Y F, SHEN J, et al. Characteristics of air cooling for cold storage and power recovery of compressed air energy storage (CAES) with inter- cooling[J]. Applied thermal engineering, 2016, 107: 1-9. DOI: 10.1016/j.applthermaleng.2016.06.064.
[19] GUO C B, PAN L H, ZHANG K N, et al. Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant[J]. Applied energy, 2016, 181: 342-356. DOI: 10.1016/j.apenergy. 2016.08.105.
[20] BUDTA M, WOLFB D, SPAN R, et al. Compressed air energy storage – An option for medium to large scale electrical-energy storage[J]. Energy procedia, 2016, 88: 698-702. DOI: 10.1016/j.egypro.2016.06.046.
[21] CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system: a critical review[J]. Progress in natural science, 2016, 19(3): 291-312. DOI: 10.1016/j.pnsc.2008.07.014.
[22] MAHLIA T M I, SAKTISAHDAN T J, JANNIFAR A, et al. A review of available methods and development on energy storage; technology update[J]. Renewable and sustainable energy reviews, 2014, 33: 532-545. DOI: 10.1016/j.rser.2014.01.068.
[23] SAFAEI H, KEITH D W. Compressed air energy storage with waste heat export: An Alberta case study[J]. Energy conversion and management, 2014, 78: 114-124. DOI: 10.1016/j.enconman.2013.10.043.
[24] BARBOUR E, MIGNARD D, DING Y L, et al. Adiabatic compressed air energy storage with packed bed thermal energy storage[J]. Applied energy, 2015, 155: 804-815. DOI: 10.1016/j.apenergy.2015.06.019.
[25] LIU J L, WANG J H. A comparative research of two adiabatic compressed air energy storage systems[J]. Energy conversion and management, 2016, 108: 566-578. DOI: 10.1016/j.enconman.2015.11.049.
[26] MAZLOUM Y, SAYAH H, NEMER M. Dynamic modeling and simulation of an Isobaric Adiabatic Compressed Air Energy Storage (IA-CAES) system[J]. Journal of energy storage, 2017, 11: 178-190. DOI: 10.1016/j.est.2017.03.006.
[27] SCIACOVELLI A, LI Y l, CHEN H S, et al. Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance[J]. Applied energy, 2017, 185: 16-28. DOI: 10.1016/j.apenergy. 2016.10.058.
[28] CHEN L X, HU P, ZHAO P P, et al. A novel throttling strategy for adiabatic compressed air energy storage system based on an ejector[J]. Energy conversion and management, 2018, 158: 50-59. DOI: 10.1016/j.enconman. 2017.12.055.
[29] TOLA V, MELONI V, SPADACCINI F, et al. Performance assessment of Adiabatic Compressed Air Energy Storage (A-CAES) power plants integrated with packed-bed thermocline storage systems[J]. Energy conversion and management, 2017, 151: 343-356. DOI: 10.1016/j.enconman.2017.08.051.
[30] KIM M J, KIM T S. Feasibility study on the influence of steam injection in the compressed air energy storage system[J]. Energy, 2017, 141: 239-249. DOI: 10.1016/ j.energy.2017.09.078.
[31] ANTONELLI M, BARSALI S, DESIDERI U, et al. Liquid air energy storage: Potential and challenges of hybrid power plants[J]. Applied energy, 2017, 194: 522-529. DOI: 10.1016/j.apenergy.2016.11.091.
[32] ANTONELLIA M, DESIDERIA U, GIGLIOLIA R, et al. Liquid air energy storage: a potential low emissions and efficient storage system[J]. Applied energy symposium and summit 2016, 88: 693-697. DOI: 10.1016/j.egypro. 2016.06.100.
[33] DING Y, TONG L, ZHANG P, et al. Liquid air energy storage[M]//LETCHER T. Storing Energy. Amsterdam: Elsevier Inc., 2016: 167-181. DOI: 10.1016/B978-0-12- 803440-8.00009-9.
[34] MORGAN R, NELMES S, GIBSON E, et al. Liquid air energy storage – Analysis and first results from a pilot scale demonstration plant[J]. Applied energy, 2015, 137: 845-853. DOI: 10.1016/j.apenergy.2014.07.109.
[35] PIMM A J, GARVEY S D, KANTHARAJ B. Economic analysis of a hybrid energy storage system based on liquid air and compressed air[J]. Journal of energy storage, 2015, 4: 24-35. DOI: 10.1016/j.est.2015.09.002.
[36] AMEEL B, T’JOEN C, DE KERPEL K, et al. Thermodynamic analysis of energy storage with a liquid air Rankine cycle[J]. Applied thermal engineering, 2013, 52(1): 130-140. DOI: 10.1016/j.applthermaleng.2012.11.037.
[37] GUIZZI G L, MANNO M, TOLOMEI L M, et al. Thermodynamic analysis of a liquid air energy storage system[J]. Energy, 2015, 93: 1639-1647. DOI: 10.1016/ j.energy.2015.10.030.
[38] KANTHARAJ B, GARVEY S, PIMM A. Compressed air energy storage with liquid air capacity extension[J]. Applied energy, 2015, 157: 152-165. DOI: 10.1016/j. apenergy.2015.07.076.
[39] GUO H, XU Y J, CHEN H S, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy conversion and management, 2016, 115: 167-177. DOI: 10.1016/j.enconman.2016.01.051.
[40] GUO H, XU Y J, CHEN H S, et al. Corresponding-point methodology for physical energy storage system analysis and application to compressed air energy storage system[J]. Energy, 2018, 143: 772-784. DOI: 10.1016/ j.energy.2017.10.132.
[41] GUO H, XU Y J, CHEN H S, et al. Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system[J]. Applied energy, 2017, 199: 96-106. DOI: 10.1016/j.apenergy.2017.04.068.
[42] PAN L S, LI B, WEI X L, et al. Experimental investigation on the CO2 transcritical power cycle[J]. Energy, 2016, 95: 247-254. DOI: 10.1016/j.energy.2015.11.074.
[43] KIM Y M, SHIN D G, LEE S Y, et al. Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage[J]. Energy, 2013, 49: 484-501. DOI: 10.1016/j.energy.2012.09.057.
[44] WANG M K, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied thermal engineering, 2015, 91: 812-823. DOI: 10.1016/j.applthermaleng.2015.08.081.
[45] AKBARI A D, MAHMOUDI S M S. Thermoeconomic performance and optimization of a novel cogeneration system using carbon dioxide as working fluid[J]. Energy conversion and management, 2017, 145: 265-277. DOI: 10.1016/j.enconman.2017.04.103.
[46] KANTHARAJ B, GARVEY S, PIMM A. Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air[J]. Sustainable energy technologies and assessments, 2015, 11: 159-164. DOI: 10.1016/j.seta.2014.11.002.
[47] XUEA X D, WANGA S X, ZHANGA X L, et al. Thermodynamic analysis of a novel liquid air energy storage system[J]. Physics procedia, 2015, 67: 733-738. DOI: 10.1016/j.phpro.2015.06.124.
[48] PENG H, YANG Y, LI R, et al. Thermodynamic analysis of an improved adiabatic compressed air energy storage system[J]. Applied energy, 2016, 183: 1361-1373. DOI: 10.1016/j.apenergy.2016.09.102.
[49] ZHAO P, WANG J F, DAI Y P. Thermodynamic analysis of an integrated energy system based on compressed air energy storage (CAES) system and Kalina cycle[J]. Energy conversion and management, 2015, 98: 161-172. DOI: 10.1016/j.enconman.2015.03.094.
[50] LUO X, WANG J H, DOONER M, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied energy, 2015, 137: 511-536. DOI: 10.1016/j.apenergy.2014.09.081.
[51] LUO X, WANG J H, DOONER M, et al. Overview of current development in compressed air energy storage technology[J]. Energy procedia, 2014, 62: 603-611. DOI: 10.1016/j.egypro.2014.12.423.