欢迎访问《新能源进展》官方网站!今天是
论文

一体式再生燃料电池温度和热流密度非原位同步测量

  • 罗 潇 ,
  • 刘佳兴 ,
  • 郭 航 ,
  • 叶 芳 ,
  • 马重芳
展开
  • 北京工业大学 环境与能源工程学院 传热强化与过程节能教育部重点实验室,传热与能源利用北京市重点实验室,北京 100124
罗 潇(1991-),男,硕士研究生,主要从事燃料电池热测量的研究。

收稿日期: 2018-01-30

  修回日期: 2018-03-16

  网络出版日期: 2018-06-29

基金资助

国家自然科学基金项目(51476003)

Ex situ Simultaneous Measurement of Temperature and Heat Flux in Unitized Regenerative Fuel Cell

  • LUO Xiao ,
  • LIU Jia-xing ,
  • GUO Hang ,
  • YE Fang ,
  • MA Chong-fang
Expand
  • MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, and Beijing Key Laboratory of Heat Transfer and Energy Conservation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China

Received date: 2018-01-30

  Revised date: 2018-03-16

  Online published: 2018-06-29

摘要

一体式再生燃料电池的热流密度和温度分布的研究对电池热管理具有重要的意义。本文将自制的薄膜传感器植入一体式再生燃料电池中,进行非原位实验研究。在给定不同气体预热温度下,测量了一体式再生燃料电池内部热流密度和局部温度,并根据已得到的温度和热流密度计算出局部表面传热系数。结果表明,在不同的气体预热温度下,流道内气体的温度和气体扩散层表面的温差维持在3℃左右。气体扩散层表面的热流密度整体呈现出下降的趋势。靠近加热棒处的温度最高,但热流密度最低。相同的气体预热温度下,流道内气体和气体扩散层表面的温差对换热量的影响要大于温度梯度的影响;气体预热温度的上升对表面传热系数h的影响不大。30℃时,表面传热系数h值在450 ~ 750 W/(m2?K) 之间。40℃时,表面传热系数h在450 ~ 650 W/(m2?K)之间。

本文引用格式

罗 潇 , 刘佳兴 , 郭 航 , 叶 芳 , 马重芳 . 一体式再生燃料电池温度和热流密度非原位同步测量[J]. 新能源进展, 2018 , 6(3) : 175 -180 . DOI: 10.3969/j.issn.2095-560X.2018.03.002

Abstract

Study on heat flux and temperature distribution of the unitized regenerated fuel cell is of great importance for its thermal management. In this work, thin film sensors prepared by vacuum evaporation coating technology were placed into the unitized regenerative fuel cell, and ex situ experiments were implemented. The heat flux and local temperature of the unitized regenerative fuel cell were obtained, and then the local heat transfer coefficient was calculated. Results showed that, the temperature difference between the flow channel and gas diffusion layer was about 3°C under different preheating temperature. Heat flux at the surface of the gas diffusion layer witnessed a downward trend with time. In comparison, the temperature was highest and the heat flux was lowest near the heating rod. Compared with temperature gradient by the heating rod, temperature difference between gas in flow channel and in diffusion layer was more influential in heat transfer under the same gas preheating temperature. Gas preheating temperature had little effect on the local heat transfer coefficient. At 30°C and 40°C, the surface local heat transfer coefficient was in the range of 450 ~ 750 W/(m2?K) and range of 450 ~ 650 W/(m2?K) respectively.

参考文献

[1] 张新荣, 童莉, 孙毅, 等. 一体式再生燃料电池双效膜电极的研究[J]. 电源技术, 2010, 34(9): 915-918. DOI: 10.3969/j.issn.1002-087X.2010.09.016.
[2] HWANG C M, ITO H, MAEDA T, et al. Flow field design for a polymer electrolyte unitized reversible fuel cell[J]. ECS transactions, 2013, 50(2): 787-794. DOI: 10.1149/05002.0787ecst.
[3] ITO H, MAEDA T, NAKANO A, et al. Effect of titanium powder loading in microporous layer on a polymer electrolyte unitized reversible fuel cell[J]. ECS transactions, 2011, 41(1): 469-477. DOI: 10.1149/1.3635581.
[4] 张新荣, 王涛, 张伟,等. 一体式再生燃料电池性能[J]. 化工进展, 2011, 30(4): 734-738. DOI: 10.16085/j.issn. 1000-6613.2011.04.005.
[5] DODDATHIMMAIAH A, ANDREWS J. Theory, modelling and performance measurement of unitised regenerative fuel cells[J]. International journal of hydrogen energy, 2009, 34(19): 8157-8170. DOI: 10.1016/j.ijhydene.2009.07.116.
[6] XIAO H, GUO H, YE F, et al. Numerical study of the dynamic response of heat and mass transfer to operation mode switching of a unitized regenerative fuel cell[J]. Energies, 2016, 9(12): 1015. DOI: 10.3390/en9121015.
[7] LIN H, CAO T F, CHEN L, et al. In situ measurement of temperature distribution within a single polymer electrolyte membrane fuel cell[J]. International journal of hydrogen energy, 2012, 37(16): 11871-11886. DOI: 10.1016/j.ijhydene.2012.05.028.
[8] 汪茂海, 郭航, 马重芳, 等. 质子交换膜燃料电池表面温度分布的测量[J]. 电源技术, 2004, 28(12): 764-766. DOI: 10.3969/j.issn.1002-087X.2004.12.009.
[9] LEE C Y, CHIANG Y C, WENG F B, et al. Flexible micro temperature, voltage and current sensors for local real-time microscopic diagnosis inside high temperature proton exchange membrane fuel cell stack[J]. Renewable energy, 2017, 108: 126-131. DOI: 10.1016/j.renene. 2017.02.015.
[10] BURHEIM O, VIE P J S, PHAROAH J G, et al. Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell[J]. Journal of power sources, 2010, 195(1): 249-256. DOI: 10.1016/j.jpowsour.2009. 06.077.
[11] 吴铄, 叶芳, 刘佳兴, 等. 被动式直接甲醇燃料电池内部温度和热通量的同步在线测量[J]. 化工学报, 2015, 66(S2): 180-185. DOI: 10.11949/j.issn.0438-1157.20150533.
[12] LIU J X, GUO H, YE F, et al. Interfacial phenomena and heat transfer in proton exchange membrane fuel cells[J]. Interfacial phenomena and heat transfer, 2015, 3(3): 259-301. DOI: 10.1615/InterfacPhenomHeatTransfer.2016014779.
[13] 吴铄, 叶芳, 郭航, 等. 不同材料基片薄膜热传感器实验研究[J]. 中国科技论文, 2015, 10(23): 2697-2700, 2706. DOI: 10.3969/j.issn.2095-2783.2015.23.001.
文章导航

/