欢迎访问《新能源进展》官方网站!今天是
论文

两种用于HCPV/T的水冷换热器传热特性的对比实验研究

  • 谢广觉 ,
  • 季 杰 ,
  • 孙 炜 ,
  • 赵 志 ,
  • 马 杨
展开
  • 中国科学技术大学热科学与能源工程系,合肥 230027
谢广觉(1994-),男,硕士研究生,主要从事太阳能高倍聚光方面的研究。

收稿日期: 2018-02-26

  修回日期: 2018-04-06

  网络出版日期: 2018-06-29

Contrast Experimental Study on the Heat Transfer Characteristics of Two Heat Exchangers for HCPV/T

  • XIE Guang-jue ,
  • JI Jie ,
  • SUN Wei ,
  • ZHAO Zhi ,
  • MA Yang
Expand
  • Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China

Received date: 2018-02-26

  Revised date: 2018-04-06

  Online published: 2018-06-29

摘要

本文对两种适用于高倍聚光发电供热(HCPV/T)系统的多槽道和微通道水冷换热器进行了实验研究。利用模拟热源模拟了HCPV/T系统中光伏电池工作时的热流密度,分别研究了流量、壁面温度和输入电压对两种换热器传热特性的影响,并利用传热学理论对两种换热器的特点进行分析,获得了两种换热器努赛尔数Nu与雷诺数Re的拟合经验公式。实验结果表明,微通道换热器在低流量下有较强的换热能力,但在高流量下,换热能力无法随流量增大继续提高;多槽道换热器在低流量下换热能力不佳,但在高流量下仍可随流量增大继续提高。

本文引用格式

谢广觉 , 季 杰 , 孙 炜 , 赵 志 , 马 杨 . 两种用于HCPV/T的水冷换热器传热特性的对比实验研究[J]. 新能源进展, 2018 , 6(3) : 181 -187 . DOI: 10.3969/j.issn.2095-560X.2018.03.003

Abstract

A multichannel and a mini channel water-cooled heat exchanger were proposed and their applications for highly concentrating photovoltaic/thermal (HCPV/T) system were experimentally studied. A simulated heat source was used to simulate the heat flux of a photovoltaic cell in an HCPV/T system, and the influence of the flow rate, surface temperature and input voltage on the heat transfer characteristics of two heat exchangers were studied. Besides, characteristics of the two heat exchangers were qualitatively analyzed by heat transfer theory. The fitting formula of the Nusselt number and the Reynolds number was obtained from the experiment results. Results showed that, the mini channel exchanger has stronger heat exchange capability in the condition of low flow rate, but the heat exchange capability would not increase with the increase of the flow rate in the condition of high flow rate. The heat exchange capability of the multichannel exchanger was poor, while it would increase with the increase of the flow in the condition of high flow rate.

参考文献

[1] COVENTRY J S. Performance of a concentrating photovoltaic/thermal solar collector[J]. Solar energy, 2005, 78(2): 211-222. DOI: 10.1016/j.solener.2004.03.014.
[2] XIE W T, DAI Y J, WANG R Z, et al. Concentrated solar energy applications using Fresnel lenses: A review[J]. Renewable and sustainable energy reviews, 2011, 15(6): 2588-2606. DOI: 10.1016/j.rser.2011.03.031.
[3] XU N, JI J, SUN W, et al. Outdoor performance analysis of a 1090× point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells[J]. Energy conversion and management, 2015, 100: 191-200. DOI: 10.1016/j.enconman.2015.04.082.
[4] SCHÄFER J. Device and method for cooling solar cells by means of a flowing cooling medium: WO/2010/136381[P]. 2010-12-02.
[5] SKOPLAKI E, PALYVOS J A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations[J]. Solar energy, 2009, 83(5): 614-624. DOI: 10.1016/j.solener.2008.10.008.
[6] ZHU L X, RAMAN A, WANG K X, et al. Radiative cooling of solar cells[J]. Optica, 2014, 1(1): 32-38. DOI: 10.1364/OPTICA.1.000032.
[7] TANAGNOSTOPOULOS Y, THEMELIS P. Natural flow air cooled photovoltaics[C]//AIP Conference Proceedings. AIP, 2010, 1203: 1013. DOI: 10.1063/1.3322300.
[8] CUCE E, BALI T, SEKUCOGLU S A. Effects of passive cooling on performance of silicon photovoltaic cells[J]. International journal of low-carbon technologies, 2011, 6(4): 299-308. DOI: 10.1093/ijlct/ctr018.
[9] Wilson E. Theoretical and operational thermal performance of a ‘wet’ crystalline silicon PV module under Jamaican conditions[J]. Renewable energy, 2009, 34(6): 1655-1660. DOI: 10.1016/j.renene.2008.10.024.
[10] ABDELRAHMAN M, ELIWA A, ABDELLATIF O E. Experimental investigation of different cooling methods for photovoltaic module[C]//11th International Energy Conversion Engineering Conference, Joint Propulsion Conferences, 2013: 14-17.
[11] NIKHIL P G, PREMALATHA M. Performance enhancement of solar module by cooling: An experimental investigation[J]. International journal of energy & environment, 2012, 3(1): 73-82.
[12] ALAMI A H. Synthetic clay as an alternative backing material for passive temperature control of photovoltaic cells[J]. Energy, 2016, 108: 195-200. DOI: 10.1016/j. energy.2015.05.029.
[13] KANE A N, VERMA V. Performance enhancement of building integrated photovoltaic module using thermoelectric cooling[J]. International journal of renewable energy research, 2013, 3(2): 320-324.
[14] HO C J, JOU B T, LAI C M, et al. Performance assessment of a BIPV integrated with a layer of water-saturated MEPCM[J]. Energy and buildings, 2013, 67: 322-333. DOI: 10.1016/j.enbuild.2013.08.035.
文章导航

/