采用等体积浸渍法在HZSM-5分子筛上引入Ga2O3,探究Ga改性HZSM-5分子筛对2-甲基呋喃(MF)和甲醇在固定床反应器中进行偶合反应的产物分布的影响。采用XRD、HTEM、BET和NH3-TPD对催化剂的理化性质进行表征,结果显示,Ga的负载使得HZSM-5比表面积和孔容减小,改变了HZSM-5的酸类型及酸位强度分布。偶合反应结果表明,Ga的负载能够促进MF和甲醇的转化,Ga/HZSM-5不仅可以提高芳香烃的产率,而且提高了芳香烃产物中BTX的选择性。与HZSM-5相比,0.1%Ga/HZSM-5在反应温度为500℃、MF与甲醇摩尔比为1∶2、WHSV为2 h−1反应条件下,使芳香烃产率从14.6%提高到23.7%,而BTX的选择性则从55.2%提高到67.8%。
Ga2O3 was introduced on HZSM-5 zeolite by incipient impregnation to study the product distribution of the coupling reaction of 2-methylfuran (MF) and methanol on fixed bed. The physicochemical properties of the catalysts were characterized by XRD, HTEM, BET and NH3-TPD. Results showed that specific surface area and pore volume of the zeolite with Ga were reduced, and the acid type and distribution of acid sites were changed. Coupling reaction results showed that the introduction of Ga could increase the conversion of MF and methanol. The yield of aromatic hydrocarbons and the selectivity of BTX both increased over Ga/HZSM-5 catalyst. Compared with HZSM-5, the yield of aromatic hydrocarbons increased from 14.6% to 23.7%, simultaneously, BTX selectivity increased from 55.2% to 67.8% over 0.1%Ga/HZSM-5 catalyst with the mole ratio of MF to methanol was 1:2, and WHSV was 2 h−1 at 500oC.
[1] CHENG Y T, WANG Z P, GILBERT C J, et al. Production of p-xylene from biomass by catalytic fast pyrolysis using ZSM-5 catalysts with reduced pore openings[J]. Angewandte Chemie-International Edition, 2012, 51(44): 11097-11100. DOI: 10.1002/anie.201205230.
[2] LU Q, ZHOU M X, LI W T, et al. Catalytic fast pyrolysis of biomass with noble metal-like catalysts to produce high-grade bio-oil: Analytical Py-GC/MS study[J]. Catalysis today, 2018, 302: 169-179. DOI: 10.1016/j.cattod.2017.08.029.
[3] KIM J C, KIM T W, KIM Y, et al. Mesoporous MFI zeolites as high performance catalysts for Diels-Alder cycloaddition of bio-derived dimethylfuran and ethylene to renewable p-xylene[J]. Applied catalysis B: environmental, 2017, 206: 490-500. DOI: 10.1016/j.apcatb.2017.01.031.
[4] CHO H J, REN L, VATTIPALLI V, et al. Renewable p-xylene from 2,5-dimethylfuran and ethylene using phosphorus- containing zeolite catalysts[J]. ChemCatChem, 2017, 9(3): 398-402. DOI: 10.1002/cctc.201601294.
[5] CHENG Y T, JAE J, SHI J, et al. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with Bifunctional Ga/ZSM-5 catalysts[J]. Angewandte chemie, 2012, 124(6): 1416-1419. DOI: 10.1002/ange.201107390.
[6] HOSSEINPOUR M, GOLZARY A, SABER M, et al. Denitrogenation of biocrude oil from algal biomass in high temperature water and formic acid mixture over H+ ZSM-5 nanocatalyst[J]. Fuel, 2017, 206: 628-637. DOI: 10.1016/j.fuel.2017.06.055.
[7] LU Q, GUO H Q, ZHOU M X, et al. Selective preparation of monocyclic aromatic hydrocarbons from catalytic cracking of biomass fast pyrolysis vapors over Mo2N/HZSM-5 catalyst[J]. Fuel processing technology, 2018, 173: 134-142. DOI: 10.1016/j.fuproc.2018.01.017.
[8] FAN Y S, CAI Y X, LI X H, et al. Coking characteristics and deactivation mechanism of the HZSM-5 zeolite employed in the upgrading of biomass-derived vapors[J]. Journal of industrial and engineering chemistry, 2017, 46: 139-149. DOI: 10.1016/j.jiec.2016.10.024.
[9] PATET R E, KOEHLE M, LOBO R F, et al. General acid-type catalysis in the dehydrative aromatization of furans to aromatics in H-[Al]-BEA, H-[Fe]-BEA, H-[Ga]-BEA, and H-[B]-BEA Zeolites[J]. The journal of physical chemistry C, 2017, 121(25): 13666-13679. DOI: 10.1021/acs.jpcc.7b02344.
[10] KIM S, KIM Y T, ZHANG C D, et al. Effect of reaction conditions on the catalytic dehydration of methanol to dimethyl ether over a K-modified HZSM-5 catalyst[J]. Catalysis letters, 2017, 147(3): 792-801. DOI: 10.1007/s10562-017-1981-0.
[11] TYNJÄLÄ P, PAKKANEN T T. Acidic properties of ZSM-5 zeolite modified with Ba2+, Al3+ and La3+ ion- exchange[J]. Journal of molecular catalysis A: chemical, 1996, 110(2): 153-161. DOI: 10.1016/1381-1169(96)00159-8.
[12] ILIOPOULOU E F, STEFANIDIS S, KALOGIANNIS K, et al. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite[J]. Applied catalysis B: environmental, 2012, 127: 281-290. DOI: 10.1016/j.apcatb.2012.08.030.
[13] WANG L, LEI H W, BU Q, et al. Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapor over Zinc modified ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor[J]. Fuel, 2014, 129: 78-85. DOI: 10.1016/j.fuel.2014.03.052.
[14] FANCHIANG W L, LIN Y C. Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts[J]. Applied catalysis A: general, 2012, 419-420: 102-110. DOI: 10.1016/j.apcata.2012.01.017.
[15] HAJIMIRZAEE S, AINTE M, SOLTANI B, et al. Dehydration of methanol to light olefins upon zeolite/alumina catalysts: Effect of reaction conditions, catalyst support and zeolite modification[J]. Chemical engineering research and design, 2015, 93: 541-553. DOI: 10.1016/j.cherd.2014.05.011.
[16] SU X F, ZAN W, BAI X F, et al. Synthesis of microscale and nanoscale ZSM-5 zeolites: effect of particle size and acidity of Zn modified ZSM-5 zeolites on aromatization performance[J]. Catalysis science & technology, 2017, 7(9): 1943-1952. DOI: 10.1039/C7CY00435D.