欢迎访问《新能源进展》官方网站!今天是
论文

300 MW循环流化床锅炉气固流动特性的CPFD模拟

  • 曾胜庭 ,
  • 陈 曦 ,
  • 马琎晨 ,
  • 赵海波
展开
  • 1. 广东粤电集团云河发电有限公司,广东 云浮 527328;
    2. 华中科技大学煤燃烧国家重点实验室,武汉 430074
曾胜庭(1964-),男,硕士,高级工程师,主要从事电厂运行与调控研究。

收稿日期: 2018-04-13

  修回日期: 2018-05-27

  网络出版日期: 2018-06-29

CPFD Simulation on Gas-Solid Hydrodynamics of a 300 MW Circulating Fluidized Bed Boiler

  • ZENG Sheng-ting ,
  • CHEN Xi ,
  • MA Jin-chen ,
  • ZHAO Hai-bo
Expand
  • 1. Guangdong Yudean Yunhe Power Co.,Ltd, Yunfu 527328, Guangdong, China;
    2. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2018-04-13

  Revised date: 2018-05-27

  Online published: 2018-06-29

摘要

采用计算颗粒流体力学(CPFD)的方法对300 MW循环流化床锅炉内的气固两相流体动力学参数进行全床数值模拟研究,重点分析了循环流化床锅炉炉膛以及回料阀的气固流动特性,获得固相颗粒浓度和速度场在炉膛内的分布以及固体循环流量、系统压力平衡、回料阀的运行情况等锅炉关键参数。结果表明:颗粒浓度的轴向分布呈现明显的密相区和稀相区两部分,模拟得到的轴向压力分布与实际工况吻合较好,验证了CPFD方法模拟循环流化床锅炉的准确性;锅炉回料阀内压降最大,这与床料分布相符;回料阀返料室流化程度较高,而输运室流化程度较小,呈现鼓泡床状态,气泡大都贴壁逃逸。

本文引用格式

曾胜庭 , 陈 曦 , 马琎晨 , 赵海波 . 300 MW循环流化床锅炉气固流动特性的CPFD模拟[J]. 新能源进展, 2018 , 6(3) : 208 -216 . DOI: 10.3969/j.issn.2095-560X.2018.03.007

Abstract

Gas-solid hydrodynamics of a 300 MW circulating fluidized bed (CFB) boiler was investigated by computational particle fluid dynamics (CPFD) simulation. The flow characteristics of the chamber and loop seal were analyzed in detail. Operation states and key parameters of the CFB boiler, such as the solid volume fraction distribution, velocity field, system pressure, the solid circulating rate and the operational condition of loop seal were evaluated to optimize the operation of the boiler. Results showed that the solid volume fraction distribution along the furnace height was obviously distinguished as a dense-phase zone at the bottom of boiler and a dilute-phase zone at the upper part of the boiler. The solid volume fraction and velocity field in dense-phase were influenced by the bed inventory, which was returned from the loop seal. It was found that these effects were gradually reduced along the height of CFD boiler. The pressure from simulation agreed with the results obtained in actual production, which showed that CPFD is an effective way for CFB simulation. It was noted that the pressure drop at loop seal was the maximum because of its function of the pressure balance for CFB, which was in line with the distribution of bed inventory. The solid bed inventory in recycle chamber was fluidized more intense than that in supply chamber and in supply chamber, material was steadily fluidized with the bubbles escaping along the wall.

参考文献

[1] 程乐鸣, 周星龙, 郑成航, 等. 大型循环流化床锅炉的发展[J]. 动力工程, 2008, 28(6): 817-826. DOI: 10.3321/j.issn:1000-6761.2008.06.001.
[2] 孙献斌, 黄中. 大型循环流化床锅炉技术与工程应用[M]. 北京: 中国电力出版社, 2009.
[3] 胡南, 王巍, 姚宣, 等. 38m/54m高循环流化床床内流体动力特性研究[J]. 中国电机工程学报, 2009, 29(26): 7-12.
[4] 周星龙, 程乐鸣, 张俊春, 等. 六回路循环流化床颗粒浓度及循环流率实验研究[J]. 中国电机工程学报, 2012, 32(5): 9-14.
[5] 张缦, 吴海波, 孙运凯, 等. 大型循环流化床锅炉外置换热器运行特性分析[J]. 中国电机工程学报, 2012, 32(14): 42-48.
[6] 刘汉周, 卢啸风, 唐家毅. 300MW循环流化床锅炉分离器入口烟道气固流动特性研究[J]. 中国电机工程学报, 2009, 29(32): 6-11.
[7] XIE J, ZHONG W Q, SHAO Y J, et al. Simulation of Combustion of municipal solid waste and coal in an industrial-scale circulating fluidized bed boiler[J]. Energy & fuels, 2017, 31(12): 14248-14261.
[8] 谢俊, 可燃固废/煤的燃烧/热解/气化过程的三维数值模拟[D]. 南京: 东南大学, 2015.
[9] 张彦军, 姜孝国. 超临界CFB锅炉炉内流场数值模拟[J]. 热力发电, 2009, 38(7): 32-35. DOI: 10.3969/j.issn. 1002-3364.2009.07.032.
[10] 许霖杰, 程乐鸣, 邹阳军, 等. 1000MW超临界循环流化床锅炉环形炉膛气固流动特性数值模拟[J]. 中国电机工程学报, 2015, 35(10): 2480-2486. DOI: 10.13334/j. 0258-8013.pcsee.2015.10.014.
[11] 王超, 程乐鸣, 周星龙, 等. 600MW超临界循环流化床锅炉炉膛气固流场的数值模拟[J]. 中国电机工程学报, 2011, 31(14): 1-7.
[12] SNIDER D M. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows[J]. Journal of computational physics, 2001, 170(2): 523-549. DOI: 10.1006/jcph.2001.6747.
[13] O’ROURKE P J, ZHAO P, SNIDER D. A model for collisional exchange in gas/liquid/solid fluidized beds[J]. Chemical engineering science, 2009, 64(8): 1784-1797. DOI: 10.1016/j.ces.2008.12.014.
[14] Snider D M, Clark S M, O’Rourke P J. Eulerian- Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers[J]. Chemical engineering science, 2011, 66(6): 1285-1295. DOI: 10.1016/j.ces.2010.12.042.
[15] Wang Q G, Yang H R, Wang P N, et al. Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal, Part I—Determination of modeling parameters[J]. Powder technology, 2014, 253: 814-821. DOI: 10.1016/j.powtec.2013.11.041.
[16] Wang Q G, Yang H R, Wang P N, et al. Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal Part II—Investigation of solids circulation[J]. Powder technology, 2014, 253: 822-828. DOI: 10.1016/j.powtec.2013.11.040.
[17] 邱桂芝, 叶佳敏, 王海刚, 等. 大型循环流化床环形炉膛中气固流动特性的CPFD数值模拟[J]. 中国科学院大学学报, 2016, 33(2): 218-222. DOI: 10.7523/j.issn. 2095-6134.2016.02.011.
[18] 张瑞卿, 杨海瑞, 吕俊复. 应用于循环流化床锅炉气固流动和燃烧的CPFD数值模拟[J]. 中国电机工程学报, 2013, 33(23), 75-83.
[19] 蒋宇. 多分离器循环流化床气固流动CPFD数值计算研究[D]. 北京: 中国科学院大学, 2014: 35-36.
[20] 邱桂芝. 大型循环流化床环形炉膛气固流动特性CPFD数值模拟和实验研究[D]. 北京: 中国科学院大学, 2015: 23-24.
文章导航

/