欢迎访问《新能源进展》官方网站!今天是
论文

Fe/ZSM-5催化剂的酸性与孔隙特性对合成气直接制备芳烃的影响

  • 文承彦 ,
  • 王晨光 ,
  • 刘琪英 ,
  • 陈伦刚 ,
  • 马隆龙 ,
  • 吕 微
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049
文承彦(1991-),男,硕士研究生,主要从事材料合成、合成气利用等研究。

收稿日期: 2018-02-24

  修回日期: 2018-04-18

  网络出版日期: 2018-06-29

基金资助

国家自然科学基金项目(51476175,5177060592);
中国科学院“百人计划”项目

Effect of Acidity and Pore Characteristics of Fe/ZSM-5 Catalyst on Direct Transformation from Syngas to Aromatics

  • WEN Cheng-yan ,
  • WANG Chen-guang ,
  • LIU Qi-ying ,
  • CHEN Lun-gang ,
  • MA Long-long ,
  • Lü Wei
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-02-24

  Revised date: 2018-04-18

  Online published: 2018-06-29

摘要

以多级孔ZSM-5分子筛为载体,通过等体积浸渍法制备了一种双功能铁基催化剂,用于合成气直接制备芳烃。采用硅烷法合成不同硅铝比和介孔孔隙率的多级孔ZSM-5分子筛载体。催化剂的理化性质通过XRD、XRF、BET和HN3-TPD进行表征。结果表明:具有较高酸性的分子筛有利于提高油相中芳烃的选择性,当载体的硅铝比为40时,在油相中芳烃选择性可达66.9%;通过调节硅烷剂3-氨丙基三甲氧基硅烷(3-APTMS)的加入量来控制分子筛的介孔孔隙率,可使碳氢产物中芳烃的收率大幅度提高。

本文引用格式

文承彦 , 王晨光 , 刘琪英 , 陈伦刚 , 马隆龙 , 吕 微 . Fe/ZSM-5催化剂的酸性与孔隙特性对合成气直接制备芳烃的影响[J]. 新能源进展, 2018 , 6(3) : 222 -228 . DOI: 10.3969/j.issn.2095-560X.2018.03.009

Abstract

A hierarchical ZSM-5 supported iron-based bifunctional catalyst was prepared by incipient wetness impregnation method, and applied to the aromatics production from syngas directly via Fischer-Tropsch. The hierarchical ZSM-5 zeolite of different silica alumina ratio and mesoporosity was prepared by adding silane. The physical-chemical properties of the catalysts were characterized by XRD, XRF, BET and HN3-TPD. Results indicated that zeolite with relative high acid amount was beneficial to the selection of aromatics in oil phase. When the silica-alumina ratio of zeolite was 40, the selectivity of aromatics in the oil reached 66.9%. In addition, the mesoporous volume of the zeolite can be adjusted by controlling the adding amount of 3-aminopropyltrimethoxysilane (3-APTMS), which may greatly increase the aromatics yield in the hydrocarbon.

参考文献

[1] WANG X L, TANG C. Pigment dispersing agent, pigment dispersion solution, color photoresist and manufacture and use thereof: 9567415[P]. 2017-02-14.
[2] Bretschneider T, Franken E M, Görgens U, et al. Heteroaromatic amides and thioamides as pesticides: 9428487[P]. 2016-08-30.
[3] FAISAL M, HUGGETT R J. Effects of polycyclic aromatic hydrocarbons on the lymphocyte mitogenic responses in spot, Leiostomus xanthurus[J]. Marine environmental research, 1993, 35(1/2): 121-124. DOI: 10.1016/0141-1136(93)90024-T.
[4] YUNG M M, JABLONSKI W S, MAGRINI-BAIR K A. Review of catalytic conditioning of biomass-derived syngas[J]. Energy & fuels, 2009, 23(4): 1874-1887. DOI: 10.1021/ef800830n.
[5] VEDRINE J C, DEJAIFVE P, GARBOWSKI E D, et al. Aromatics formation from methanol and light olefins conversions on H-ZSM-5 Zeolite,: mechanism and intermediate species[J]. Studies in Surface Science and Catalysis, 1980, 5: 29-37. DOI: 10.1016/S0167-2991(08) 64862-4.
[6] MARINOV N M, PITZ W J, WESTBROOK C K, et al. Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames[J]. Combustion science and technology, 2012, 116-117(1/6): 211-287. DOI: 10.1080/00102209608935550.
[7] ZHANG Q D, TAN Y S, YANG C H, et al. Characterization and catalytic application of MnCl2 modified HZSM-5 zeolites in synthesis of aromatics from syngas via dimethyl ether[J]. Journal of industrial and engineering chemistry, 2013, 19(3): 975-980. DOI: 10.1016/j.jiec.2012.11.019.
[8] Friedel R A, Anderson R B. Composition of synthetic liquid fuels. I. product distribution and analysis of C5-C8 Paraffin isomers from cobalt catalyst[J]. Journal of the American chemical society, 1950, 72(3): 1212-1215. DOI: 10.1021/ja01159a039.
[9] TIAN Z P, WANG C G, SI Z, et al. Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method[J]. Applied catalysis A: general, 2017, 541: 50-59. DOI: 10.1016/j.apcata.2017.05.001.
[10] ZHAO B R, CHEN Z P, CHEN Y J, et al. Syngas methanation over Ni/SiO2 catalyst prepared by ammonia-assisted impregnation[J]. International journal of hydrogen energy, 2017, 42(44): 27073-27083. DOI: 10.1016/j.ijhydene.2017.09.068.
[11] LEE D K, KIM D S, KIM T H, et al. Distribution of carbon deposits on reduced Co/Y-zeolite catalysts for Fischer–Tropsch synthesis[J]. Catalysis today, 2010, 154(3/4): 237-243. DOI: 10.1016/j.cattod.2010.03.053.
[12] TANG Q H, WANG Y, ZHANG Q H, et al. Preparation of metallic cobalt inside NaY zeolite with high catalytic activity in Fischer–Tropsch synthesis[J]. Catalysis communications, 2003, 4(5): 253-258. DOI: 10.1016/ S1566-7367(03)00053-0.
[13] MARTÍNEZ A, ROLLÁN J, ARRIBAS M A, et al. A detailed study of the activity and deactivation of zeolites in hybrid Co/SiO2-zeolite Fischer–Tropsch catalysts[J]. Journal of catalysis, 2007, 249(2): 162-173. DOI: 10.1016/j.jcat.2007.04.012.
[14] KANG S H, BAE J W, PRASAD P S S, et al. Fischer–Tropsch synthesis using zeolite-supported iron catalysts for the production of light hydrocarbons[J]. Catalysis letters, 2008, 125(3/4): 264-270. DOI: 10.1007/ s10562-008-9586-2.
[15] SIROKMAN G, SENDODA Y, ONO Y. Conversion of pentane into aromatics over ZSM-5 zeolites[J]. Zeolites, 1986, 6(4): 299-303. DOI: 10.1016/0144-2449(86)90084-9.
[16] INOUE Y, NAKASHIRO K, ONO Y. Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites[J]. Microporous materials, 1995, 4(5): 379-383. DOI: 10.1016/0927-6513(95)00020-A.
[17] FOSTER A J, JAE J, CHENG Y T, et al. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5[J]. Applied catalysis A: general, 2012, 423-424: 154-161. DOI: 10.1016/j.apcata.2012.02.030.
[18] YANG J H, PAN X L, JIAO F, et al. Direct conversion of syngas to aromatics[J]. Chemical communications, 2017, 53(81): 11146-11149. DOI: 10.1039/C7CC04768A.
[19] CHENG K, ZHOU W, KANG J C, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017, 3(2): 334-347. DOI: 10.1016/j.chempr.2017.05.007.
[20] ZHAO B, ZHAI P, WANG P F, et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and Hierarchical HZSM-5 tandem catalysts[J]. Chem, 2017, 3(2): 323-333. DOI: 10.1016/j.chempr.2017.06.017.
[21] SCHWIEGER W, MACHOKE A G, WEISSENBERGER T, et al. Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity[J]. Chemical society reviews, 2016, 45(12): 3353-3376. DOI: 10.1039/c5cs00599j.
[22] FERNANDEZ C, STAN I, GILSON J P, et al. Hierarchical ZSM-5 zeolites in shape-selective xylene isomerization: role of mesoporosity and acid site speciation[J]. Chemistry, 2010, 16(21): 6224-6233. DOI: 10.1002/chem.200903426.
[23] MATIAS P, COUTO C S, GRAÇA I, et al. Desilication of a TON zeolite with NaOH: Influence on porosity, acidity and catalytic properties[J]. Applied catalysis a general, 2011, 399(1/2): 100-109. DOI: 10.1016/j.apcata.2011.03.049.
[24] CHOI M, CHO H S, SRIVASTAVA R, et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J]. Nature materials, 2006, 5(9): 718-723. DOI: 10.1038/nmat1705.
[25] LI K H, VALLA J, GARCIA-MARTINEZ J. Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking[J]. Chemcatchem, 2014, 6(1): 46-66. DOI: 10.1002/cctc.201300345.
[26] SERRANO D P, AGUADO J, ESCOLA J M, et al. Catalytic properties in polyolefin cracking of hierarchical nanocrystalline HZSM-5 samples prepared according to different strategies[J]. Journal of catalysis, 2010, 276(1): 152-160. DOI: 10.1016/j.jcat.2010.09.008.
[27] CHU L L, LIU G, XIAO Q. Direct construction of hierarchical ZSM-5 microspheres aided by 3-glycidoxypropyl- trimethoxysilane[J]. Materials Research Bulletin, 2014, 60: 746-751. DOI: 10.1016/j.materresbull.2014.09.053.
[28] SERRANO D P, PINNAVAIA T J, AGUADO J, et al. Hierarchical ZSM-5 zeolites synthesized by silanization of protozeolitic units: Mediating the mesoporosity contribution by changing the organosilane type[J]. Catalysis today, 2014, 227: 15-25. DOI: 10.1016/j.cattod.2013.10.052.
[29] HOANG T Q, ZHU X L, DANUTHAI T, et al. Conversion of glycerol to alkyl-aromatics over zeolites[J]. Energy & fuels, 2010, 24(7): 3804-3809. DOI: 10.1021/ef100160y.
[30] HOANG T Q, ZHU X L, LOBBAN L L, et al. Effects of HZSM-5 crystallite size on stability and alkyl-aromatics product distribution from conversion of propanal[J]. Catalysis communications, 2010, 11(11): 977-981. DOI: 10.1016/j.catcom.2010.04.014.
[31] ZHENG A Q, ZHAO Z L, CHANG S, et al. Maximum synergistic effect in the coupling conversion of bio-derived furans and methanol over ZSM-5 for enhancing aromatic production[J]. Green chemistry, 2014, 16(5): 2580-2586. DOI: 10.1039/C3GC42251H.
[32] SERRANO D P, AGUADO J, ESCOLA J M, et al. Effect of the organic moiety nature on the synthesis of hierarchical ZSM-5 from silanized protozeolitic units[J]. Journal of materials chemistry, 2008, 18(35): 4210-4218. DOI: 10.1039/b805502e.
文章导航

/