欢迎访问《新能源进展》官方网站!今天是
论文

燃烧室结构对微型摆式发动机燃烧过程影响的数值模拟

  • 赵罗光 ,
  • 蒋利桥 ,
  • 赵黛青 ,
  • 汪小憨
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院大学,北京 100049;
    3. 中国科学院可再生能源重点实验室,广州 510640;
    4. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640
赵罗光(1995-),男,硕士研究生,主要从事微型摆动式发动机内燃烧数值和实验研究。

收稿日期: 2018-04-04

  修回日期: 2018-05-25

  网络出版日期: 2018-06-29

基金资助

国家重点基础研究发展计划项目(2014CB239600);
国家自然科学基金项目(51336010)

Numerical Simulation of the Effects of Chamber Structure on Combustion Process in MICSE

  • ZHAO Luo-guang ,
  • JIANG Li-qiao ,
  • ZHAO Dai-qing ,
  • WANG Xiao-han
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    4. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China

Received date: 2018-04-04

  Revised date: 2018-05-25

  Online published: 2018-06-29

摘要

基于Fluent-CFD软件建立了摆臂自由运动条件下的微型摆式发动机内燃烧过程三维动态网格数值模型,采用正丁烷氧化一步反应机理模拟了三种内径的燃烧室内流动与燃烧过程,考察了燃烧室内径对系统性能的影响。结果表明:增大内径可以减小燃烧室底部区域燃料残留,促进燃烧更快完成,提高燃烧室内的峰值压力和缩短峰值出现时间,有利于提高发动机的输出功、功率密度和效率。

本文引用格式

赵罗光 , 蒋利桥 , 赵黛青 , 汪小憨 . 燃烧室结构对微型摆式发动机燃烧过程影响的数值模拟[J]. 新能源进展, 2018 , 6(3) : 239 -244 . DOI: 10.3969/j.issn.2095-560X.2018.03.011

Abstract

Based on the Fluent-CFD software, a three-dimensional dynamic grid numerical model was established to simulate the combustion process of a micro internal combustion swing engine (MICSE) with a free-swinging arm. One-step reaction mechanism of n-butane oxidation was employed for numerically calculating the flow and combustion processes in the combustion chamber. The effects of three inner diameters of combustion chamber on the output performance of MICSE were compared. The results showed that increasing the inner diameter can reduce the fuel residue at the bottom of the chamber, accelerate combustion, increase the peak pressure and shorten the occurrence time of peak pressure, which is beneficial to improve the output power, power density and thermal efficiency of MICSE.

参考文献

[1] EPSTEIN A H, SENTURIA S D, AL-MIDANI O, et al. Micro-heathe MIT microengine project engines, gas turbines, and rocket engines-T[C]//Proceedings of the 28th fluid dynamics conference. Snowmass Village, CO, U. S. A.: American Institute of Aeronautics and Astronautics, 1997: 1773. DOI: 10.2514/6.1997-1773.
[2] AICHLMAYR H T, KITTELSON D B, ZACHARIAH M R. Micro-HCCI combustion: experimental characterization and development of a detailed chemical kinetic model with coupled piston motion[J]. Combustion and flame, 2003, 135(3): 227-248. DOI: 10.1016/S0010-2180(03)00161-5.
[3] FU K, KNOBLOCH A J, MARTINEZ F C, et al. Design and experimental results of small-scale rotary engines[C]// Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition. NewYork, NY: ASME, 2001.
[4] DAHM W A, NI J, MAYOR R, et al. Micro Internal Combustion Swing Engine (MICSE) for portable power generation systems[C]//40th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV: AIAA,2002.
[5] JU Y G, MARUTA K. Microscale combustion: Technology development and fundamental research[J]. Progress in energy and combustion science, 2011, 37(6): 669-715. DOI: 10.1016/j.pecs.2011.03.001.
[6] GU Y X. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems[D]. Michigan: University of Michigan, 2006.
[7] 郭志平, 张仕民. 新型二冲程微型摆式内燃机的设计方法[M]. 北京: 国防工业出社, 2013.
[8] 周雄, 孔文俊. 燃烧特征参数对MICSE性能及热力过程的影响[J]. 工程热物理学报, 2015, 36(5): 1125-1129.
[9] 郑子辉, 汪小憨, 蒋利桥, 等. 二冲程微摆发动机的三维数值模拟[J]. 新能源进展, 2016, 4(2): 88-93. DOI: 10.3969/j.issn.2095-560X.2016.02.002.
文章导航

/