欢迎访问《新能源进展》官方网站!今天是
论文

基于化工流程模拟平台的生物质移动床热解多联产系统模拟研究

  • 魏智宇 ,
  • 杨晴 ,
  • 周荷雯 ,
  • 李佳硕 ,
  • 杨海平 ,
  • 陈汉平
展开
  • 1. 华中科技大学煤燃烧国家重点实验室,武汉 430074;
    2. 华中科技大学中欧清洁与可再生能源学院,武汉 430074;
    3. 华中科技大学能源与动力工程学院新能源科学与工程系,武汉 430074;
    4. 哈佛大学工程学院,美国 马萨诸塞 坎布里奇 02138
魏智宇(1993-),男,硕士研究生,主要从事生物质能技术模拟及评价研究。杨 晴(1983-),女,博士,副教授,主要从事可再生能源的系统分析与评价研究。

收稿日期: 2018-03-02

  修回日期: 2018-05-02

  网络出版日期: 2018-08-31

基金资助

国家自然科学基金面上项目(51576087); 国家自然科学基金优秀青年科学基金项目(51622604); 国家自然基金青年基金项目(71704060)

Simulation of Biomass Moving-Bed Pyrolytic Polygeneration System Based on Aspen Plus

  • WEI Zhi-yu ,
  • YANG Qing ,
  • ZHOU He-wen ,
  • LI Jia-shuo ,
  • YANG Hai-ping ,
  • CHEN Han-ping
Expand
  • 1. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China;
    3. Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
    4. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

Received date: 2018-03-02

  Revised date: 2018-05-02

  Online published: 2018-08-31

摘要

在Aspen Plus平台上构建生物质移动床热解多联产系统模型,通过对秸秆热解过程的模拟,研究了生物炭、生物油和生物燃气三态热解产物特性,以及热解温度对系统燃料投入、水耗和电耗的影响。结果表明,随热解温度升高,生物炭热值逐渐增大。生物油和生物燃气的产率分别在450℃和650℃附近达到最大值。当热解温度为450℃时,生物油重质组分主要由糖衍生类和脂肪酸类物质构成,而轻质组分主要包括醛类、醇类和水;当热解温度为650℃时,生物燃气则主要由CO2和CO构成。生产过程中,系统的燃料消耗和电耗均随着热解温度的升高而增大,冷却水消耗量则经历先减少后增加的过程,并在450℃附近达到最小值。

本文引用格式

魏智宇 , 杨晴 , 周荷雯 , 李佳硕 , 杨海平 , 陈汉平 . 基于化工流程模拟平台的生物质移动床热解多联产系统模拟研究[J]. 新能源进展, 2018 , 6(4) : 253 -260 . DOI: 10.3969/j.issn.2095-560X.2018.04.001

Abstract

With the model of biomass moving-bed pyrolytic polygeneration system based on Aspen Plus simulator, the products characteristics of bio-char, bio-oil and pyrolysis-gas were studied and the influence of pyrolysis temperature on the system consumption of fuel, cooling water, and electricity were investigated. Results showed that the heating value of bio-char rises as the pyrolysis temperature increases. The maximum products yields of bio-oil and syngas were obtained at 450oC and 650oC, respectively. When the pyrolysis temperature was 450oC, the heavy bio-oil mainly consists of sugar derived and fatty acid, while the major components of light bio-oil were aldehyde, alcohol and moisture. CO and CO2 were the main components in the syngas at 650oC. In addition, the consumption of fuel and electricity rises with the temperature increase, while the consumption of cooling water decreases firstly and then increases at 450oC.

参考文献

[1] 赵军, 王述洋. 我国生物质能资源与利用[J]. 太阳能学报, 2008, 29(1): 90-94. DOI: 10.3321/j.issn:0254-0096. 2008.01.018.
[2] 彭立群, 张强, 贺克斌. 基于调查的中国秸秆露天焚烧污染物排放清单[J]. 环境科学研究, 2016, 29(8): 1109-1118. DOI: 10.13198/j.issn.1001-6929.2016.08.02.
[3] 李斌, 陈汉平, 杨海平, 等. 基于ASPEN PLUS平台的生物质氧气气化制备合成气的模拟研究[J]. 燃烧科学与技术, 2011, 17(5): 432-426.
[4] 王超, 陈冠益, 兰维娟, 等. 生物质快速热解制油试验及流程模拟[J]. 化工学报, 2014, 65(2): 679-683. DOI: 10.3969/j.issn.0438-1157.2014.02.044.
[5] SHEMFE M B, GU S, RANGANATHAN P.Techno-economic performance analysis of biofuel production and miniature electric power generation from biomass fast pyrolysis and bio-oil upgrading[J]. Fuel, 2015, 143: 361-372. DOI: 10.1016/j.fuel.2014.11.078.
[6] PETERS J F, BANKS S W, BRIDGWATER A V, et al.A kinetic reaction model for biomass pyrolysis processes in Aspen Plus[J]. Applied energy, 2017, 188: 595-603. DOI: 10.1016/j.apenergy.2016.12.030.
[7] 吕奇铮, 徐起翔, 张长森, 等. Aspen Plus在生物质快速热解制取燃料油中的应用进展[J]. 化工进展, 2016, 35(S1): 116-121. DOI: 10.16085/j.issn.1000-6613.2016. s1.020.
[8] RANZI E, CUOCI A, FARAVELLI T, et al.Chemical kinetics of biomass pyrolysis[J]. Energy & fuels, 2008, 22(6): 4292-4300. DOI: 10.1021/ef800551t.
[9] FARAVELLI T, FRASSOLDATI A, MIGLIAVACCA G, et al.Detailed kinetic modeling of the thermal degradation of lignins[J]. Biomass and bioenergy, 2010, 34(3): 290-301. DOI: 10.1016/j.biombioe.2009.10.018.
[10] DEBIAGI P E A, PECCHI C, GENTILE G, et al. Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis[J]. Energy & fuels, 2015, 29(10): 6544-6555. DOI: 10.1021/acs.energyfuels.5b01753.
[11] PETERS J F, IRIBARREN D, DUFOUR J.Predictive pyrolysis process modelling in Aspen Plus[C]//Proceedings of the European Biomass Conference and Exhibition.
[12] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2016.
[13] YANG H P, YAN R, CHEN H P, et al.In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin[J]. Energy & fuels, 2011, 20(1): 388-393. DOI: 10.1021/ ef0580117.
[14] 陈应泉. 生物质热解多联产过程机理及实验研究[D]. 武汉: 华中科技大学, 2013.
[15] GAO Y, WANG X H, CHEN Y Q, et al.Pyrolysis of rapeseed stalk: Influence of temperature on product characteristics and economic costs[J]. Energy, 2017, 122: 482-491. DOI: 10.1016/j.energy.2017.01.103.
文章导航

/