欢迎访问《新能源进展》官方网站!今天是
论文

微生物燃料电池阳极材料研究进展

  • 邓丽芳 ,
  • 袁浩然 ,
  • 王鲁丰 ,
  • 钱鑫 ,
  • 陈勇
展开
  • 1. 广东工业大学材料与能源学院,广州 510006;
    2. 中国科学院广州能源研究所,广州 510640;
    3. 中国科学院可再生能源重点实验室,广州 510640
邓丽芳(1982-),女,硕士,副研究员,主要从事微生物燃料电池及废水处理研究。袁浩然(1981-),男,博士,研究员,主要从事有机固体废弃物资源化与能源化转化研究。

收稿日期: 2018-04-27

  修回日期: 2018-06-04

  网络出版日期: 2018-08-31

基金资助

国家自然科学基金项目(51606200,51608507); 广东省科技计划项目(2017B040404011,2017B040404009); 中国科学院创新交叉团队项目

Latest Research Progress of Anode Materials in Microbial Fuel Cell

  • DENG Li-fang ,
  • YUAN Hao-ran ,
  • WANG Lu-feng ,
  • QIAN Xin ,
  • CHEN Yong
Expand
  • 1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    3. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China

Received date: 2018-04-27

  Revised date: 2018-06-04

  Online published: 2018-08-31

摘要

微生物燃料电池(microbial fuel cell,MFC)是一种新型的生物电化学装置,能将可生物降解有机物中的化学能直接转化成电能,而阳极材料性能是影响MFC性能的重要因素之一。通过对阳极材料进行改性和修饰可以有效地增大其比表面积、生物相容性等,以提高其微生物负载率和电子传递速率,进而提高MFC的产电性能。本文全面介绍和总结了近年来国内外关于微生物燃料电池阳极材料的研究进展,分析微生物燃料电池阳极材料在规模放大应用中存在的问题,并对微生物燃料电池阳极材料今后的发展方向进行了展望。

本文引用格式

邓丽芳 , 袁浩然 , 王鲁丰 , 钱鑫 , 陈勇 . 微生物燃料电池阳极材料研究进展[J]. 新能源进展, 2018 , 6(4) : 319 -325 . DOI: 10.3969/j.issn.2095-560X.2018.04.010

Abstract

Microbial fuel cell (MFC) is a novel bio-electrochemical device which is possible of converting biodegradable material into electricity directly, while anode material is one of the important factors that restrict the MFC performance. More microbial attached and electron transfer efficiency increased by improving or modifying the surface area and biocompatibility of the anode material, so as to optimize the MFC performance. In this paper, the novel research progress of anode material in MFC was reviewed, the existing problems in large scale application of anode electrode materials were analyzed, and the future development direction was prospected.

参考文献

[1] PANT D, SINGH A, VAN BOGAERT G, et al.An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects[J]. Renewable and Sustainable Energy Reviews, 2011, 15(2): 1305-1313. DOI: 10.1016/j.rser.2010.10.005.
[2] 杨永刚, 孙国萍, 许玫英. 微生物燃料电池在环境污染治理研究中的应用进展[J]. 微生物学报, 2010, 50(7): 847-852.
[3] JANICEK A, FAN Y Z, LIU H.Design of microbial fuel cells for practical application: A review and analysis of scale-up studies[J]. Biofuels, 2014, 5(1): 79-92. DOI: 10.4155/bfs.13.69.
[4] CHENG S, LIU H, LOGAN B E.Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing[J]. Environmental Science Technology, 2006, 40(7): 2426-2432. DOI: 10.1021/es051652w.
[5] VILAS BOAS J, OLIVEIRA V B, MARCON L R C, et al. Performance optimization of a single chamber microbial fuel cell using Lactobacillus pentosus[J]. World Hydrogen Energy Conference, 2016, 20(12): 2576-2580. DOI: hdl.handle.net/10216/105958.
[6] VILAS BOAS J, OLIVEIRA V B, MARCON L R C, et al. Effect of operating and design parameters on the performance of a microbial fuel cell with Lactobacillus pentosus[J]. Biochemical Engineering Journal, 2015, 104(15): 34-40. DOI: 10.1016/j.bej.2015.05.009.
[7] VENKIDUSAMY K, MEGHARAJ M.A Novel Electrophototrophic Bacterium Rhodopseudomonas palustris Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments[J]. Frontiers in Microbiology, 2016, 7(1071): 3391-3402. DOI: 10.3389/ fmicb.2016.01071.
[8] XIAO Y, ZHENG Y, WU S, et al.Pyrosequencing Reveals a Core Community of Anodic Bacterial Biofilms in Bioelectrochemical Systems from China[J]. Frontiers in Microbiology, 2015, 6(16): 1410-1421. DOI: 10.3389/ fmicb.2015.01410.
[9] 范梦婕, 陈柳柳, 徐源, 等. 微生物燃料电池阴极材料研究进展[J]. 化工新型材料, 2017, 45(6): 26-28.
[10] TANG J H, YUAN Y, LIU T, et al.High-capacity carbon-coated titanium dioxide core-shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells[J]. Journal of Power Sources, 2015, 274(15): 170-176. DOI: 10.1016/j. jpowsour.2014.10.035.
[11] GIL G C, CHANG I S, KIM B H, et al.Operational parameters affecting the performance of a mediator-less microbial fuel cell[J]. Biosensors Bioelectronics, 2003, 18(4): 327-334. DOI: 10.1016/S0956-5663(02)00110-0.
[12] RAHIMNEJAD M, ADHAMI A, DARVARI S, et al.Microbial fuel cell as new technology for bioelectricity generation: a review[J]. Alexandria Engineering Journal, 2015, 54(3): 745-756. DOI: 10.1016/j.jpowsour.2014.10. 035.
[13] GUDE V G.Wastewater treatment in microbial fuel cells- an overview[J]. Journal of Cleaner Production, 2016, 122(20):287-307. DOI: 10.1016/j.jclepro.2016.02. 022.
[14] LIU H R.RAMNARAYANAN, LOGAN B E. Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell[J]. Environmental Science Technology, 2004, 38(7): 2281-2285. DOI: 10.1021/es034923g.
[15] LIU Y, HARNISCH F, FRICKE K, et al.The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells[J]. Biosensors Bioelectronics, 2010, 25(9): 2167-2171. DOI: 10.1016/j.bios.2010.01.016.
[16] RABAEY K, CLAUWAERT P, AELTERMAN P, et al.Tubular Microbial Fuel Cells for Efficient Electricity Generation[J]. Environmental Science Technology, 2005, 39(20): 8077-8082. DOI: 10.1021/es050986i.
[17] DEWAN A, BEYENAL H, LEWANDOWSKI Z.Scaling up microbial fuel cells[J]. Environ. Sci. Technol, 2008, 42(20): 7643-7648. DOI: 10.1021/es800775d.
[18] MIN B, KIM J R, OH S E, et al.Electricity generation from swine wastewater using microbial fuel cells[J]. Water Research, 2005, 39(20):4961-4968. DOI: 10.1016/ j.watres.2005.09.039.
[19] OH S E, LOGAN B E.Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells[J]. Applied Microbiology Biotechnology, 2006, 70(2): 162-169. DOI: 10.1007/ s00253-005-0066-y.
[20] MIN B, LOGAN B E.Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environmental Science Technology, 2004, 38(21): 5809-5814. DOI: 10.1021/es 0491026.
[21] NIMJE V R, CHEN C Y, CHEN C C.Glycerol degradation in single-chamber microbial fuel cells[J]. Bioresource Technology, 2011, 102(3): 2629-2634. DOI: 10.1016/j.biortech.2010.10.062.
[22] CHENG S A, LOGAN B E.Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(3): 492-496. DOI: 10.1016/j. elecom.2006.10.023.
[23] WANG X, CHENG S, FENG Y, et al.Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environmental Science Technology, 2009, 43(17): 6870-6874. DOI: 10.1021/es900997w.
[24] ZHAO F, RAHUNEN N, VARCOE J R, et al.Activated carbon cloth as anode for sulfate removal in a microbial fuel cell[J]. Environmental Science Technology, 2008, 42(13): 4971-4976. DOI: 10.1021/es8003766.
[25] TER HEIJINE A, HAMELERS H V, SAAKES M, et al.Performance of non-porous graphite and titanium based anodes in microbial fuel cells[J]. Electrochimica Acta, 2008, 53(18): 5697-5703. DOI: 10.1016/j.electacta. 2008. 03.032.
[26] QIAO Y, BAO S J, LI C M.Nanostructured polyaniline/ titanium dioxide composite anode for microbial fuel cells[J]. ACS Nano, 2008, 2(1): 113-119. DOI: 10.1021/nn700102s.
[27] ZHAO C E, WANG W J, SUN D, et al.Nanostructured graphene/TiO2 hybrids as high-performance an odes fur microbial fuel cells[J]. Chemistry-A European Journal, 2014, 20(23): 7091-7097. DOI: 10.1002/chem. 201400272.
[28] DUMAS C, MOLLICA A, FERON D, et al.Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials[J]. Electrochimica Acta, 2007, 53(2): 468-473. DOI: 10.1016/j.electacta. 2007. 06.069.
[29] DUMAS C, BASSEGUY R, BERGEL A.Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes[J]. Electrochimica Acta, 2008, 53(16): 5235-5241. DOI: 10.1016 /j.electacta.2008.02.056.
[30] ZHANG Y Z, MO G Q, LIX Q, et al.A graphene modified anode to improve the performance of microbial fuel cells[J]. Journal of Power Sources, 2011, l96(13): 5402-5407. DOI: 10.1016/j.jpowsour.2011.02.067.
[31] CHAUDHURI S K, LOVELY D R.Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J]. Nature Biotechnology, 2003, 21(10): 1229-1232. DOI: 10.1038/nbt867.
[32] LOGAN B E, CHENG S, WATSON V, et al.Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells[J]. Environmental Science Technology, 2007, 41(9): 3341-3346. DOI: 10.1021/es062644y.
[33] WU S J, HE W H, YANG W L, et al.Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater[J]. Journal of Power Sources, 2017, 356(1): 348-355. DOI: 10.1016/j. jpowsour. 2017.01.041.
[34] DEKKER A, HEIJNE A T, SAAKES M, et al.Analysis and Improvement of a Scaled-Up and Stacked Microbial Fuel Cell[J]. Environmental Science Technology, 2009, 43(23): 9038-9042. DOI: 10.1021/es901939r.
[35] JIANG D, LIX, RAYMOND D, et al.Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications[J]. International Journal of Hydrogen Energy, 2010, 35(16): 8683-8689. DOI: 10.1016/j.ijhydene.2010.04.136.
[36] FENGY, YANG Q, WANG X, et al.Treatment of graphite fiber brush anodes for improving power generation in air-cathode microbial fuel cells[J]. Journal of Power Sources, 2010, 195(7): 1841-1844. DOI: 10.1016/j.jpowsour.2009.10.030.
[37] XIE X, HU L B, PASTAM, et al. Three-Dimensional Carbon Nanotube-Textile Anode for High-Performance Microbial Fuel Cells[J]. Nano Letter, 2011, 11(1): 291-296. DOI: 10.1021/nl103905t.
[38] CHEN S L, HOU H Q, HARNISCH F, et al.Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells[J]. Energy Environmental Science, 2011, 4(20): 1417-1421. DOI: 10.1039/C0EE00446D.
[39] YONG Y C, DONG X C, CHAN-PARK M B, et al. Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells[J]. ACS Nano, 2012, 6(3): 2394-2400. DOI: 10.1021/nn204656d.
[40] HOU J X, LIU Z L, YANG S Q, et al.Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells[J]. Journal of Power Sources, 2014, 258(15): 204-209. DOI: 10.1016/j. jpowsour.2014.02.035.
[41] SHEN Y, ZHOU Y, CHEN S, et al.Carbon nanofibers modified graphite felt for high performance anode in high substrate concentration microbial fuel cells[J]. Science World Journal, 2014, 2014(2014): 1-5. DOI: 10.1155/2014/130185.
[42] CUI H F, DU L, GUO P B, et al.Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high performance microbial fuel cell anode[J]. Journal of Power Sources, 2015, 283(1): 46-53. DOI: 10.1016/j.jpowsour.2015.02.088.
[43] ZHAO S L, LI Y C, YIN H J, et al.Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells[J]. Science Advances, 2015, 1(10): 1-8. DOI: 10.1126/sciadv.1500372.
[44] ZHOU Y, TANG L J, LIU Z L, et al.A novel anode fabricated by three-dimensional printing for use in urine-powered microbial fuel cell[J]. Biochemical Engineering Journal. 2017, 124: 36-43. DOI: 10.1016/j. bej.2017.04.012.
[45] CHEN S, HE G, HU X, et al.A three-dimensionally ordered macroporous carbon derived from a natural resource as anode for microbial bioelectrochemical systems[J]. ChemSusChem, 2012, 5(6): 1059-1063. DOI: 10.1002/cssc.201100783.
[46] CHEN S, HE G, LIU Q, et al.Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis[J]. Energy Environmental Science, 2012, 5(12): 9769-9772. DOI: 10.1039/C2EE23344D.
[47] YUAN Y, ZHOU S G, LIU Y, et al.Nanostructured Macroporous Bioanode Based on Polyaniline- Modified Natural Loofah Sponge for High-Performance Microbial Fuel Cells[J]. Environmental Science Technology, 2013, 47(24): 14525-14532. DOI: 10.1021/es404163g.
[48] ZHENG J L, CHENG C X, ZHANG J, et al.Appropriate mechanical strength of carbon black-decorated loofah sponge as anode material in microbial fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(48): 23156-23163. DOI: 10.1016/j.ijhydene.2016.11. 003.
[49] ZHANG J, LI J, YE D D, et al.Tubular bamboo charcoal for anode in microbial fuel cells[J]. Journal of Power Sources, 2014, 272(25): 277-282. DOI: 10.1016/j. jpowsour.2014.08.115.
[50] KARTHIKETAN R, WANG B, XUAN J, et al.Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell[J]. Electrochimica Acta, 2015, 157(1): 314-323. DOI: 10.1016/j.electacta.2015.01.029.
[51] WU X S, QIAO Y, SHI Z Z, et al.Enhancement of interfacial bioelectrocatalysis in Shewanella microbial fuel cells by a hierarchical porous carbon-silica composite derived from distiller's grains[J]. Sustainable Energy Fuels, 2018, 2(2): 655-662. DOI: 10.1039/ C7SE00560A.
[52] CHEN Q, PU W H, HOU H J, et al.Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells[J]. Bioresource Technology, 2018, 249: 567-573. DOI: 10.1016/j. biortech.2017.09.086.
[53] YUAN H R, DONG G, LI D N, et al.Steamed cake-derived 3D carbon foam with surface anchored carbon nanoparticles as freestanding anodes for high-performance microbial fuel cells[J]. Science of the Total Environment. 2018, 636:1081-1088. DOI: 10.1016/ j.scitotenv. 2018.04.367.
文章导航

/