欢迎访问《新能源进展》官方网站!今天是
研究论文

采用不同集热器的太阳能吸收式制冷系统经济性分析

  • 李靖 ,
  • 朱川生 ,
  • 李华山 ,
  • 王令宝 ,
  • 龚宇烈
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049
李 靖(1993-),男,硕士研究生,主要从事太阳能分布式利用方面的研究。龚宇烈(1978-),男,博士,研究员,主要从事地热资源规划利用、地热能能量转换技术、新型热泵技术研究。

收稿日期: 2018-05-24

  修回日期: 2018-08-28

  网络出版日期: 2018-10-31

基金资助

广东省自然科学基金项目(2015A030313714)

Economic Analysis of Solar Powered Absorption Refrigeration System Powered by Different Solar Collectors

  • LI Jing ,
  • ZHU Chuan-sheng ,
  • LI Hua-shan ,
  • WANG Ling-bao ,
  • GONG Yu-lie
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-05-24

  Revised date: 2018-08-28

  Online published: 2018-10-31

摘要

以能源平均成本和动态投资回收期为经济性指标,对采用平板集热器、真空管集热器、复合抛物面集热器和槽式集热器驱动的太阳能单效溴化锂吸收式制冷系统进行了对比分析,同时以?效率和动态投资回收期为目标对优选的太阳能制冷系统进行了多目标优化。结果表明:采用真空管集热器的太阳能制冷系统的能源平均成本最低及动态投资回收期最短;发生器热水进口温度存在最优值使得系统?效率最高,能源平均成本最低;增加系统装机容量可有效降低系统的能源平均成本并且缩短投资回收期;太阳辐照强度越大,太阳能制冷系统的能源平均成本越低及投资回收期越短。此外,多目标优化结果表明发生器热水进口温度存在最优值可使得综合目标函数取得最小值。

本文引用格式

李靖 , 朱川生 , 李华山 , 王令宝 , 龚宇烈 . 采用不同集热器的太阳能吸收式制冷系统经济性分析[J]. 新能源进展, 2018 , 6(5) : 379 -386 . DOI: 10.3969/j.issn.2095-560X.2018.05.007

Abstract

With levelized energy cost (LEC) and dynamic investment pay-back period (DIPP) as performance indicators, the economic performance of single-effect LiBr absorption refrigeration systems driven by four different solar collectors were investigated including flat-plate collector, evacuated-tube collector, compound-parabolic collector and parabolic-trough collector. Furthermore, multi-objective optimization of the selected solar powered system was performed based on the exergy efficiency and DIPP. The results showed that the LEC and DIPP of refrigeration system driven by evacuated-tube collector were optimal, and there existed an optimum value of Thf, in which corresponds to the maximum exergy efficiency and minimum LEC. The LEC and DIPP of the system decreased with the increase of cooling capacity as well as solar radiation intensity. Besides, the multi-objective optimization indicated that there was an optimum hot water temperature at the generator inlet that corresponds to the minimum value of multi-objective function.

参考文献

[1] FLORIDES G A, KALOGIROU S A, TASSOU S A, et al.Modelling, simulation and warming impact assessment of a domestic-size absorption solar cooling system[J]. Applied thermal engineering, 2002, 22(12): 1313-1325. DOI: 10.1016/S1359-4311(02)00054-6.
[2] KIM D S, FERREIRA C A I. Solar refrigeration options-a state-of-the-art review[J]. International journal of refrigeration, 2008, 31(1): 3-15. DOI: 10.1016/j. ijrefrig.2007.07.011.
[3] 刘震华, 陈亚平. 用于太阳能空调的板型溴化锂吸收式制冷机[J]. 能源研究与利用, 2005(2): 26-28. DOI: 10.3969/j.issn.1001-5523.2005.02.008.
[4] CALISE A, D’ACCADIA M D, PALOMBO A. Transient analysis and energy optimization of solar heating and cooling systems in various configurations[J]. Solar energy, 2010, 84(3): 432-449. DOI: 10.1016/j.solener.2010.01.001.
[5] HANG Y, QU M, ZHAO F.Economical and environmental assessment of an optimized solar cooling system for a medium-sized benchmark office building in Los Angeles, California[J]. Renewable energy, 2011, 36(2): 648-658. DOI: 10.1016/j.renene.2010.08.005.
[6] DUFFIE J A, BECKMAN W A.Solar engineering of thermal processes[M]. Hoboken: Wiley Press, 2006.
[7] KALOGIROU S A.Solar energy engineering: processes and systems[M]. 2nd ed. Cambridge: Academic Press, 2013.
[8] AL-SULAIMAN F A, HAMDULLAHPUR F, DINCER I. Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production[J]. Renewable energy, 2012, 48: 161-172. DOI: 10.1016/j.renene.2012.04.034.
[9] HEROLD K E, RADERMACHER R, KLEIN S A.Absorption chillers and heat pumps[M]. Boca Raton: Productivity Press, 2016.
[10] BORGE D, COLMENAR A, CASTRO M, et al.Exergy efficiency analysis in buildings climatized with LiCl-H2O solar cooling systems that use swimming pools as heat sinks[J]. Energy and buildings, 2011, 43(11): 3161-3172. DOI: 10.1016/j.enbuild.2011.08.014.
[11] 李鑫, 李安定, 李斌, 等. 碟式/斯特林太阳能热发电系统经济性分析[J]. 中国电机工程学报, 2005, 25(12): 108-111. DOI: 10.3321/j.issn:0258-8013.2005.12.020.
[12] DINCER I, ROSEN M A, AHMADI P.Optimization of energy systems[M]. Hoboken: Wiley Press, 2017.
[13] GUADALFAJARA M, LOZANO M A, SERRA L M.A simple method to calculate central solar heating plants with seasonal storage[J]. Energy procedia, 2014, 48: 1096-1109. DOI: 10.1016/j.egypro.2014.02.124.
[14] SONSAREE S, ASAOKA T, JIAJITSAWAT S, et al.A small-scale solar organic Rankine Cycle power plant in Thailand: three types of non-concentrating solar collectors[J]. Solar energy, 2018, 162: 541-560. DOI: 10.1016/j.solener.2018.01.038.
[15] OROSZ M, MATHAHA P, TSIU A, et al.Low-cost small scale parabolic trough collector design for manufacturing and deployment in Africa[J]. AIP Conference Proceedings, 2015, 1734: 020016. DOI: 10.1063/1.4949040.
[16] 马原良, 曹家枞. 直燃式溴化锂冷温水机组的能耗与经济性分析[J]. 制冷与空调, 2008, 8(1): 46-48, 23. DOI: 10.3969/j.issn.1009-8402.2008.01.012.
[17] 殷平. CCHP系统节能减排计算方法研究(1): 碳排放计算方法[J]. 暖通空调, 2016, 46(2): 12-17.
[18] 季中文. 动态投资回收期计算方法探讨[J]. 生物技术世界, 2012(6): 136-137.
[19] 王志奇, 周乃君, 夏小霞, 等. 有机朗肯循环发电系统的多目标参数优化[J]. 化工学报, 2013, 64(5): 1710-1716. DOI: 10.3969/j.issn.0438-1157.2013.05.028.
[20] 高雷阜. 最优化理论与方法[M]. 沈阳: 东北大学出版社, 2005: 197.
[21] 苟林. 中国钢铁行业节能减排潜力分析[J]. 生态经济, 2015, 31(9): 52-55.
文章导航

/