欢迎访问《新能源进展》官方网站!今天是
研究论文

太阳位置算法的计算误差对辐射预测的影响

  • 鲍鹤鸣 ,
  • 顾一凡 ,
  • 刘超 ,
  • 高淑宁 ,
  • 关欣
展开
  • 上海理工大学能源与动力工程学院,上海 200093
鲍鹤鸣(1993-),男,硕士研究生,主要从事聚光光伏系统优化研究。关 欣(1971-),女,博士,副教授,主要从事新能源利用、高效换热器及相关技术研究。顾一凡(1996-),男,学士,主要从事新能源利用相关技术研究。刘 超(1993-),男,硕士研究生,主要从事新能源利用相关技术研究。高淑宁(1994-),女,硕士研究生,主要从事新能源利用相关技术研究。

收稿日期: 2018-07-25

  修回日期: 2018-08-06

  网络出版日期: 2018-10-31

Effect of Calculation Error of Solar Position Algorithm on Radiation Prediction Calculation

  • BAO He-ming ,
  • GU Yi-fan ,
  • LIU Chao ,
  • GAO Shu-ning ,
  • GUAN Xin
Expand
  • Thermal Engineering Institute, Shanghai University of Science and Technology, Shanghai 200093, China

Received date: 2018-07-25

  Revised date: 2018-08-06

  Online published: 2018-10-31

摘要

以往太阳辐射预测计算的研究多采用柯伯方程等误差较大的公式,往往忽略了太阳方位参数计算误差对辐射预测计算模型的影响。忽略其他因素影响,仅计算不同太阳方位参数误差所对应的太阳辐照度,计算结果与天文年历标准值的计算结果进行对比,发现太阳方位参数的误差不仅对太阳辐照度计算造成7%以上的误差(时角大于70°时),而且在日出和日落之间临界点时也会产生极大的数值计算误差。针对以上问题,本文提出了引入儒略日为时间变量和采用大数据量最小二乘法拟合改进的数值模拟法,在保持计算公式简易的同时,显著降低了临界点的计算误差,而且辐射计算结果的相对误差小于0.2%。

本文引用格式

鲍鹤鸣 , 顾一凡 , 刘超 , 高淑宁 , 关欣 . 太阳位置算法的计算误差对辐射预测的影响[J]. 新能源进展, 2018 , 6(5) : 387 -393 . DOI: 10.3969/j.issn.2095-560X.2018.05.008

Abstract

The influence of the calculation error of the solar azimuth parameter on the radiation prediction model was often neglected in the past studies, formulas with large error such as the Cooper equation was used. By eliminating the influence of other factors, only the solar irradiance calculation results corresponding to the different solar azimuth parameter errors were calculated and compared with the standard astronomical calendar calculation results. It was found that the error of the solar azimuth parameter not only caused an error of more than 7% for the solar irradiance calculation (when the time angle was greater than 70 degrees), but also caused a large calculation error at the transition point between sunrise and sunset. In response to the above questions, this paper improved the numerical simulation method using the Julian Day as the time variable and using the large data quantity least squares method to fit it. Not only greatly reducing the calculation error of the critical point, but also the relative error of calculated result was less than 0.2%.

参考文献

[1] 国际能源署. 世界能源展望中国特别报告: 中国能源展望2017[J]. 中国油气(英文版), 2018, 25(02): 66.
[2] VOYANT C, NOTTON G, KALOGIROU S, et al.Machine Learning methods for solar radiation forecasting: a review[J]. Renewable energy, 2017, 105: 569-582. DOI: 10.1016/j.renene.2016.12.095.
[3] IBRAHIM D.Optimum tilt angle for solar collectors used in Cyprus[J]. Renewable energy, 1995, 6(7): 813-819. DOI: 10.1016/0960-1481(95)00070-Z.
[4] 吴贞龙, 徐政, 胡晓燕, 等. 倾斜面太阳辐照度实用计算模型的研究[J]. 太阳能学报, 2016, 37(3): 787-793. DOI: 10.3969/j.issn.0254-0096.2016.03.039.
[5] LIU B Y H, JORDAN R C. The long-term average performance of flat-plate solar-energy collectors: With design data for the U.S., its outlying possessions and Canada[J]. Solar energy, 1963, 7(2): 53-74. DOI: 10.1016/0038-092X(63)90006-9.
[6] BUGLER J W.The determination of hourly insolation on an inclined plane using a diffuse irradiance model based on hourly measured global horizontal insolation[J]. Solar energy, 1977, 19(5): 477-491. DOI: 10.1016/0038-092X (77)90103-7.
[7] PEREZ R, STEWART R, ARBOGAST C, et al.An anisotropic hourly diffuse radiation model for sloping surfaces: Description, performance validation, site dependency evaluation[J]. Solar energy, 1986, 36(6): 481-497. DOI: 10.1016/0038-092X(86)90013-7.
[8] PEREZ R, SEALS R, INEICHEN P, et al.A new simplified version of the Perez diffuse irradiance model for tilted surfaces[J]. Solar energy, 1987, 39(3): 221-231. DOI: 10.1016/S0038-092X(87)80031-2.
[9] 邓艳君, 邱新法, 曾燕, 等. 几种水平面太阳总辐射量计算模型的对比分析[J]. 气象科学, 2013, 33(4): 371-377. DOI: 10.3969/2012jms.0124.
[10] 王志敏, 任艳男, 齐井超, 等. 竖直面上太阳辐射的模拟计算研究[J]. 可再生能源, 2017, 35(2): 207-212. DOI: 10.13941/j.cnki.21-1469/tk.2017.02.008.
[11] 武晓伟, 李洁. 石河子地区太阳能供暖系统集热器最佳倾角的计算及模拟分析[J]. 石河子大学学报(自然科学版), 2018, 36(1): 108-113. DOI: 10.13880/j.cnki.65- 1174/n.2018.01.020.
[12] 曾理, 程晓舫. 基于非均质大气模型的太阳辐射计算方法[J]. 中国科学技术大学学报, 2015, 45(6): 490-496. DOI: 10.3969/j.issn.0253-2778.2015.06.010.
[13] REIKARD G.Predicting solar radiation at high resolutions: A comparison of time series forecasts[J]. Solar energy, 2009, 83(3): 342-349. DOI: 10.1016/j.solener. 2008.08.007.
[14] 周海, 朱想, 金山红, 等. 超短期太阳辐照度多模型预测[J]. 中国科技论文, 2017, 12(23): 2695-2700. DOI: 10.3969/j.issn.2095-2783.2017.23.010.
[15] REDA I, ANDREAS A.Solar position algorithm for solar radiation applications[J]. Solar energy, 2004, 76(5): 577-589. DOI: 10.1016/j.solener.2003.12.003.
[16] 王炳忠, 汤洁. 几种太阳位置计算方法的比较研究[J]. 太阳能学报, 2001, 22(4): 413-417. DOI: 10.3321/j.issn: 0254-0096.2001.04.010.
[17] BOURGES B.Improvement in solar declination computation[J]. Solar energy, 1985, 35(4): 367-369. DOI: 10.1016/0038-092X(85)90144-6.
[18] MICHALSKY J J.The Astronomical Almanac's algorithm for approximate solar position (1950-2050)[J]. Solar energy, 1988, 40(3): 227-235. DOI: 10.1016/0038-092X(88)90045-X.
文章导航

/