欢迎访问《新能源进展》官方网站!今天是
综述

新型吸附式制冷系统吸附床的研究进展

  • 林勇军 ,
  • 何兆红 ,
  • 黄宏宇 ,
  • 陈颖 ,
  • 邓立生 ,
  • 窪田光宏
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 广东工业大学,广州 510640;
    3. 中国科学院可再生能源重点实验室,广州 510640;
    4. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    5. 名古屋大学,日本 名古屋 4648603
林勇军(1993-),男,硕士研究生,主要从事吸附式制冷研究。黄宏宇(1978-),男,研究员,主要从事低品位能提质高效利用利用方面的研究。

收稿日期: 2018-06-06

  修回日期: 2018-07-10

  网络出版日期: 2018-10-31

基金资助

广东省省级科技计划项目(2017A050501046,2014B050502011)

Research Progress in New Types of Adsorbent Bed for Adsorption Refrigeration

  • LIN Yong-jun ,
  • HE Zhao-hong ,
  • HUANG Hong-yu ,
  • CHEN Ying ,
  • DENG Li-sheng ,
  • KUBOTA Mitsuhiro
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Guangdong University of Technology, Guangzhou 510640, China;
    3.CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    4. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    5. Nagoya University, Nagoya 4648603, Japan

Received date: 2018-06-06

  Revised date: 2018-07-10

  Online published: 2018-10-31

摘要

吸附床的传热传质性能是提高吸附式制冷效率的关键,优化吸附床的结构能够有效提高整个吸附床的传热传质效率,减少热量损失,提高系统的制冷效率(coefficient of performance, COP)和单位质量吸附剂制冷量(specific cooling power, SCP)。本文介绍了近年来几种新型吸附床的类型,综述了吸附剂侧的固化吸附剂和涂层吸附剂,以及换热器侧的新型换热器结构。最后阐述新型吸附床的未来发展方向和研究重点。

本文引用格式

林勇军 , 何兆红 , 黄宏宇 , 陈颖 , 邓立生 , 窪田光宏 . 新型吸附式制冷系统吸附床的研究进展[J]. 新能源进展, 2018 , 6(5) : 432 -438 . DOI: 10.3969/j.issn.2095-560X.2018.05.013

Abstract

The heat and mass transfer properties of adsorbent bed is the key point to improve the efficiency of adsorption refrigeration. Optimizing the structure of the adsorbent bed can effectively improve the heat and mass transfer efficiency of the whole adsorbent bed, reduce the heat loss, and improve the cooling coefficient of performance (COP) and the refrigerating capacity (SCP) of the per unit mass adsorbent. In this paper, several new adsorbent bed types in recent years were introduced, consolidated adsorbent and coated adsorbent on the adsorbent side and new heat transfer structure on the heat exchanger side were reviewed. Finally, the future development direction and research focus for the new adsorbent bed were described.

参考文献

[1] technologies for low-energy buildings[J]. Future cities and environment, 2015, 1: 10. DOI: 10.1186/s40984- 015-0011-x.
[2] JABBARI-HICHRI A, BENNICI S, AUROUX A.Enhancing the heat storage density of silica-alumina by addition of hygroscopic salts (CaCl2, Ba(OH)2, and LiNO3)[J]. Solar energy materials and solar cells, 2015, 140: 351-360. DOI: 10.1016/j.solmat.2015.04.032.
[3] SHMROUKH A N, ALI A H H, OOKAWARA S. Adsorption working pairs for adsorption cooling chillers: a review based on adsorption capacity and environmental impact[J]. Renewable and sustainable energy reviews, 2015, 50: 445-456. DOI: 10.1016/j.rser.2015.05.035.
[4] SHARAFIAN A, FAYAZMANESH K, MCCAGUE C, et al.Thermal conductivity and contact resistance of mesoporous silica gel adsorbents bound with polyvinyl- pyrrolidone in contact with a metallic substrate for adsorption cooling system applications[J]. International journal of heat and mass transfer, 2014, 79: 64-71. DOI: 10.1016/j.ijheatmasstransfer.2014.07.086.
[5] 何兆红, 鲁涛, 黄宏宇, 等. 新型吸附床的研究进展[J]. 化学工程, 2011, 39(10): 34-38. DOI: 10.3969/j.issn. 1005-9954.2011.10.009.
[6] JIN Z Q, TIAN B, WANG L W, et al.Comparison on thermal conductivity and permeability of granular and consolidated activated carbon for refrigeration[J]. Chinese journal of chemical engineering, 2013, 21(6): 676-682. DOI: 10.1016/S1004-9541(13)60525-X.
[7] WANG L W, METCALF S J, CRITOPH R E, et al.Development of thermal conductive consolidated activated carbon for adsorption refrigeration[J]. Carbon, 2012, 50(3): 977-986. DOI: 10.1016/j.carbon.2011.09.061.
[8] ZHAO Y J, WANG L W, WANG R Z, et al.Study on consolidated activated carbon: choice of optimal adsorbent for refrigeration application[J]. International journal of heat and mass transfer, 2013, 67: 867-876. DOI: 10.1016/j.ijheatmasstransfer.2013.08.052.
[9] 吴永生. 船舶余热氨吸附式制冷混合吸附剂研制[D]. 厦门: 集美大学, 2014.
[10] MAURAN S, LEBRUN M, PRADES P, et al. Active composite and its use as reaction medium: 5283219[P].1994-02-01.
[11] TIAN B, JIN Z Q, WANG L W, et al.Permeability and thermal conductivity of compact chemical and physical adsorbents with expanded natural graphite as host matrix[J]. International journal of heat and mass transfer, 2012, 55(15/16): 4453-4459. DOI: 10.1016/j.ijheatmasstransfer. 2012.04.016.
[12] JIANG L, WANG L W, WANG R Z.Investigation on thermal conductive consolidated composite CaCl2 for adsorption refrigeration[J]. International journal of thermal sciences, 2014, 81: 68-75. DOI: 10.1016/j.ijthermalsci.2014.03.003.
[13] RESTUCCIA G, FRENI A, RUSSO F, et al.Experimental investigation of a solid adsorption chiller based on a heat exchanger coated with hydrophobic zeolite[J]. Applied thermal engineering, 2005, 25(10): 1419-1428. DOI: 10.1016/j.applthermaleng.2004.09.012.
[14] LI A, THU K, ISMAIL A B, et al.Performance of adsorbent-embedded heat exchangers using binder-coating method[J]. International journal of heat and mass transfer, 2016, 92: 149-157. DOI: 10.1016/j.ijheatmasstransfer.2015.08.097.
[15] CHANG K S, CHEN M T, CHUNG T W.Effects of the thickness and particle size of silica gel on the heat and mass transfer performance of a silica gel-coated bed for air-conditioning adsorption systems[J]. Applied thermal engineering, 2005, 25(14/15): 2330-2340. DOI: 10.1016/j.applthermaleng.2004.12.020.
[16] KIM C, CHO K, KIM S K, et al.Alumina-coated ordered mesoporous silica as an efficient and stable water adsorbent for adsorption heat pump[J]. Microporous and mesoporous materials, 2017, 239: 310-315. DOI: 10.1016/j.micromeso.2016.10.014.
[17] JEONG C K, KIM Y C, BAE K J, et al.Heat transfer characteristics of fin-tube heat exchanger coated with fapo zeolite adsorbent at different operating conditions[J]. Journal of the korean society for power system engineering, 2017, 21(3): 93-101.
[18] FRENI A, BONACCORSI L, CALABRESE L, et al.SAPO-34 coated adsorbent heat exchanger for adsorption chillers[J]. Applied thermal engineering, 2015, 82: 1-7. DOI: 10.1016/j.applthermaleng.2015.02.052.
[19] FRENI A, FRAZZICA A, DAWOUD B, et al.Adsorbent coatings for heat pumping applications: verification of hydrothermal and mechanical stabilities[J]. Applied thermal engineering, 2013, 50(2): 1658-1663. DOI: 10.1016/j.applthermaleng.2011.07.010.
[20] FRAZZICA A, FÜLDNER G, SAPIENZA A, et al. Experimental and theoretical analysis of the kinetic performance of an adsorbent coating composition for use in adsorption chillers and heat pumps[J]. Applied thermal engineering, 2014, 73(1): 1022-1031. DOI: 10.1016/j.applthermaleng.2014.09.004.
[21] WANG L L, HAN C, NADAGOUDA M N, et al.An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid[J]. Journal of hazardous materials, 2016, 313: 283-290. DOI: 10.1016/j.jhazmat.2016.03.070.
[22] SANTAMARIA S, SAPIENZA A, FRAZZICA A, et al.Water adsorption dynamics on representative pieces of real adsorbers for adsorptive chillers[J]. Applied energy, 2014, 134: 11-19. DOI: 10.1016/j.apenergy.2014.07.053.
[23] ÇAĞLAR A, YAMALI C. Analysis of heat and mass transfer in the adsorbent bed of a thermal wave adsorption cooling cycle[J]. Computational thermal sciences: an international journal, 2013, 5(2): 97-106. DOI: 10.1615/computthermalscien.2013006349.
[24] ÇAĞLAR A. The effect of fin design parameters on the heat transfer enhancement in the adsorbent bed of a thermal wave cycle[J]. Applied thermal engineering, 2016, 104: 386-393. DOI: 10.1016/j.applthermaleng.2016.05.092.
[25] VERDE M, HARBY K, CORBERÁN J M. Optimization of thermal design and geometrical parameters of a flat tube-fin adsorbent bed for automobile air-conditioning[J]. Applied thermal engineering, 2017, 111: 489-502. DOI: 10.1016/j.applthermaleng.2016.09.099.
[26] JI X, LI M, FAN J Q, et al.Structure optimization and performance experiments of a solar-powered finned-tube adsorption refrigeration system[J]. Applied energy, 2014, 113: 1293-1300. DOI: 10.1016/j.apenergy.2013.08.088.
[27] 谢军, 王定标. 固体吸附式制冷系统新型针刺板吸附床数值模拟研究[J]. 制冷空调与电力机械, 2008(02): 36-38+50. DOI: 10.3969/j.issn.2095-3429.2008.02.010.
[28] REZK A R M, AL-DADAH R K. Physical and operating conditions effects on silica gel/water adsorption chiller performance[J]. Applied energy, 2012, 89(1): 142-149. DOI: 10.1016/j.apenergy.2010.11.021.
[29] NIAZMAND H, DABZADEH I.Numerical simulation of heat and mass transfer in adsorbent beds with annular fins[J]. International journal of refrigeration, 2012, 35(3): 581-593. DOI: 10.1016/j.ijrefrig.2011.05.013.
[30] NIAZMAND H, TALEBIAN H, MAHDAVIKHAH M.Bed geometrical specifications effects on the performance of silica/water adsorption chillers[J]. International journal of refrigeration, 2012, 35(8): 2261-2274. DOI: 10.1016/j.ijrefrig.2012.08.017.
[31] REZK A, AL-DADAH R K, MAHMOUD S, et al. Effects of contact resistance and metal additives in finned- tube adsorbent beds on the performance of silica gel/water adsorption chiller[J]. Applied thermal engineering, 2013, 53(2): 278-284. DOI: 10.1016/j.applthermaleng.2012.04.008.
文章导航

/