欢迎访问《新能源进展》官方网站!今天是
综述

静电纺丝用于制备有机相变储热纤维的研究进展

  • 陆源 ,
  • 郇昌梦 ,
  • 齐帅 ,
  • 詹勇军 ,
  • 刘红莎 ,
  • 肖秀娣 ,
  • 徐刚
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049;
    5. 中国科学技术大学,合肥 230026
陆 源(1989-),女,博士研究生,主要从事静电纺丝技术用于制备相变储热材料的研究。郇昌梦(1993-),男,硕士研究生,主要从事节能智能材料的合成与研究。肖秀娣(1982-),女,博士,副研究员,硕士生导师,主要从事二氧化钒智能窗的研究。徐 刚(1970-),男,博士,研究员,博士生导师,中国科学院“百人计划”项目引进人才,主要从事太阳能光热、光电纳米复合材料的研究与开发。

收稿日期: 2018-07-21

  修回日期: 2018-08-29

  网络出版日期: 2018-10-31

基金资助

国家重点研发项目(2018YFD0700200); 国家自然科学基金项目(51506205); 中国科学院STS项目(KFJ-STS-QYZD-010); 西藏自治区重大科技项目(ZD20170017); 中国科学院青年创新促进会项目(2017400); 广东省特支计划项目(2015TQ01N714)

Review on Organic Phase Change Materials Based Fibers for Thermal Energy Storage via Electrospinning Technique

  • LU Yuan ,
  • HUAN Chang-meng ,
  • QI Shuai ,
  • ZHAN Yong-jun ,
  • LIU Hong-sha ,
  • XIAO Xiu-di ,
  • XU Gang
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China;
    5. University of Science and Technology of China, Hefei 230026, China

Received date: 2018-07-21

  Revised date: 2018-08-29

  Online published: 2018-10-31

摘要

相变储热材料是指由于材料相转变吸热或放热过程而本身温度不变,从而实现储能的一类功能材料。有机相变材料如石蜡类、多元醇类及硬脂酸类因无腐蚀、无毒、无过冷等优点已成为重要的低温相变储热材料。这类材料通过固-液相变调节微环境温度,可用于服装、建筑及军事等方面,市场前景广阔。但相变过程易泄漏及热导率低等限制其了实际应用。静电纺丝是有效解决该问题的方法之一,高分子在高压静电作用下形成纤维,相变材料被高分子作为支撑材料所固定,很好地解决了泄漏问题。此外,通过加入高热导率材料可提高相变材料的吸放热速率,改善有机相变材料热导率低的问题。本文总结了近年来静电纺丝用于制备相变调温纤维的研究报道,分析了目前该类材料的研究现状,并讨论未来研究方向。为储热相变材料的进一步研究提供参考。

本文引用格式

陆源 , 郇昌梦 , 齐帅 , 詹勇军 , 刘红莎 , 肖秀娣 , 徐刚 . 静电纺丝用于制备有机相变储热纤维的研究进展[J]. 新能源进展, 2018 , 6(5) : 439 -447 . DOI: 10.3969/j.issn.2095-560X.2018.05.014

Abstract

Phase change materials (PCMs) is a kind of functional materials which temperature constant during the phase change process where it can absorb or release heat. PCMs such as paraffin wax, polyalcohol and fatty acid have been widely used as low-temperature thermal energy storage (TES) materials because of non-corrosiveness, non-toxicity and no undercooling etc. Besides, PCMs can be applied in the field of clothing, architecture and military etc. due to its temperature adjusting capability. However, the leakage issue and low thermal conductivity limits its practical application. Electrospinning is an effective method to produce micro-nano fibers and load the high thermal conductivity materials to address the above problems. This paper summarizes the electrospun PCMs fibers in recent years and discusses the challenges and opportunities in the future, which paves a way to further development of electrospun PCMs fibers.

参考文献

[1] ZHAO L, LUO J, LI Y, et al.Emulsion-electrospinning n-octadecane/silk composite fiber as environmental- friendly form-stable phase change materials[J]. Journal of applied polymer science, 2017, 134(47): 45538. DOI: 10.1002/app.45538.
[2] BENMOUSSA D, MOLNAR K, HANNACHE H, et al.Novel thermo-regulating comfort textile based on poly(allyl ethylene diamine)/n-hexadecane microcapsules grafted onto cotton fabric[J]. Advances in polymer technology, 2016, 37(2): 419-428. DOI: 10.1002/adv.21682.
[3] LOMAX G R.Breathable polyurethane membranes for textile and related industries[J]. Journal of materials chemistry, 2007, 17(27): 2775-2784. DOI: 10.1039/B703447B.
[4] GUGLIUZZA A, DRIOLI E.A review on membrane engineering for innovation in wearable fabrics and protective textiles[J]. Journal of membrane science, 2013, 446: 350-375. DOI: 10.1016/j.memsci.2013.07.014.
[5] LU Y, XIAO X D, ZHAN Y J, et al.Core-sheath paraffin-wax-loaded nanofibers by electrospinning for heat storage[J]. ACS applied materials & interfaces, 2018, 10(15): 12759-12767. DOI: 10.1021/acsami.8b02057.
[6] LIU C Z, RAO Z H, ZHAO J T, et al.Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement[J]. Nano energy, 2015, 13: 814-826. DOI: 10.1016/j.nanoen.2015. 02.016.
[7] 蔡以兵, 孙桂岩, 刘盟盟, 等. 定形相变复合材料的研究进展——静电纺丝法[J]. 高分子通报, 2015(2): 18-25. DOI: 10.14028/j.cnki.1003-3726.2015.02.003.
[8] LU Y, XIAO X D, CAO Z Y, et al.Transparent optically vanadium dioxide thermochromic smart film fabricated via electrospinning technique[J]. Applied surface science, 2017, 425: 233-240. DOI: 10.1016/j.apsusc.2017.07.035.
[9] MCCANN J T, MARQUEZ M, XIA Y N.Melt coaxial electrospinning: ?a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers[J]. Nano letters, 2006, 6(12): 2868-2872. DOI: 10.1021/nl0620839.
[10] ALAY S, GÖDE F, ALKAN C. Preparation and characterization of poly(methylmethacrylate-coglycidyl methacrylate)/n-hexadecane nanocapsules as a fiber additive for thermal energy storage[J]. Fibers and polymers, 2010, 11(8): 1089-1093. DOI: 10.1007/s12221-010-1089-2.
[11] ROMEO V, VITTORIA V, SORRENTINO A.Development of nanostructured thermoregulating textile materials[J]. Journal of nanoscience and nanotechnology, 2008, 8(9): 4399-4403. DOI: 10.1166/jnn.2008.281.
[12] RAHBAR R S, MALEKI H, KALANTARI B.Fabrication of electrospun nanofibre yarn based on nylon 6/microencapsulated phase change materials[J]. Journal of experimental nanoscience, 2016, 11(18): 1402-1415. DOI: 10.1080/17458080.2016.1233582.
[13] VAN DO C, NGUYEN T T T, PARK J S. Phase-change core/shell structured nanofibers based on eicosane/poly (vinylidene fluoride) for thermal storage applications[J]. Korean journal of chemical engineering, 2013, 30(7): 1403-1409. DOI: 10.1007/s11814-013-0046-3.
[14] PEREZ-MASIA R, LOPEZ-RUBIO A, FABRA M J, et al.Biodegradable polyester-based heat management materials of interest in refrigeration and smart packaging coatings[J]. Journal of applied polymer science, 2013, 130(5): 3251-3262. DOI: 10.1002/app.39555.
[15] PÉREZ-MASIÁ R, LÓPEZ-RUBIO A, LAGARÓN J M. Development of zein-based heat-management structures for smart food packaging[J]. Food hydrocolloids, 2013, 30(1): 182-191. DOI: 10.1016/j.foodhyd.2012.05.010.
[16] HU W, YU X.Thermal and mechanical properties of bio-based PCMs encapsulated with nanofibrous structure[J]. Renewable energy, 2014, 62: 454-458. DOI: 10.1016/j.renene.2013.07.047.
[17] CHALCO-SANDOVAL W, FABRA M J, LÓPEZ-RUBIO A, et al. Optimization of solvents for the encapsulation of a phase change material in polymeric matrices by electro- hydrodynamic processing of interest in temperature buffering food applications[J]. European polymer journal, 2015, 72: 23-33. DOI: 10.1016/j.eurpolymj.2015.08.033.
[18] SIROHI S, SINGH D, NAIN R, et al.Electrospun composite nanofibres of PVA loaded with nanoencapsulated n-octadecane[J]. RSC advances, 2015, 5(43): 34377-34382. DOI: 10.1039/C4RA16988C.
[19] SUN S X, XIE R, WANG X X, et al.Fabrication of nanofibers with phase-change core and hydrophobic shell, via coaxial electrospinning using nontoxic solvent[J]. Journal of materials science, 2015, 50(17): 5729-5738. DOI: 10.1007/s10853-015-9118-https://doi.org/.
[20] RAHIMI M, MOKHTARI J.Fabrication of thermo-regulating hexadecane-polyurethane core-shell composite nanofibrous mat as advanced technical layer: Effect of coaxial nozzle geometry[J]. Journal of industrial textiles, 2016, 47(6): 1134-1151. DOI: 10.1177/1528083716676816.
[21] HAGHIGHAT F, HOSSEINI RAVANDI S A, NASR ESFAHANY M, et al. A comprehensive study on optimizing and thermoregulating properties of core-shell fibrous structures through coaxial electrospinning[J]. Journal of materials science, 2018, 53(6): 4665-4682. DOI: 10.1007/s10853-017-1856-1.
[22] ZDRAVEVA E, FANG J, MIJOVIC B, et al.Electrospun poly(vinyl alcohol)/phase change material fibers: morphology, heat properties, and stability[J]. Industrial & engineering chemistry research, 2015, 54(35): 8706-8712. DOI: 10.1021/acs.iecr.5b01822.
[23] CHALCO-SANDOVAL W, FABRA M J, LÓPEZ-RUBIO A, et al. Use of phase change materials to develop electrospun coatings of interest in food packaging applications[J]. Journal of food engineering, 2017, 192: 122-128. DOI: 10.1016/j.jfoodeng.2015.01.019.
[24] CHALCO-SANDOVAL W, FABRA M J, LÓPEZ-RUBIO A, et al. Development of an encapsulated phase change material via emulsion and coaxial electrospinning[J]. Journal of applied polymer science, 2016, 133(36): 43903. DOI: 10.1002/app.43903.
[25] HU W, YU X.Encapsulation of bio-based PCM with coaxial electrospun ultrafine fibers[J]. RSC advances, 2012, 2(13): 5580-5584. DOI: 10.1039/C2RA20532G.
[26] SARIER N, ARAT R, MENCELOGLU Y, et al.Production of PEG grafted PAN copolymers and their electrospun nanowebs as novel thermal energy storage materials[J]. Thermochimica acta, 2016, 643: 83-93. DOI: 10.1016/j.tca.2016.10.002.
[27] NGUYEN T T T, PARK J S. Fabrication of electrospun nonwoven mats of polyvinylidene fluoride/polyethylene glycol/fumed silica for use as energy storage materials[J]. Journal of applied polymer science, 2011, 121(6): 3596-3603. DOI: 10.1002/app.34148.
[28] CHEN C Z, WANG L G, HUANG Y.Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials[J]. Materials letters, 2009, 63(5): 569-571. DOI: 10.1016/ j.matlet.2008.11.033.
[29] SEIFPOOR M, NOURI M, MOKHTARI J.Thermo-regulating nanofibers based on nylon 6,6/polyethylene glycol blend[J]. Fibers and polymers, 2011, 12(6): 706-714. DOI: 10.1007/s12221-011-0706-z.
[30] BABAPOOR A, KARIMI G, KHORRAM M.Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning[J]. Applied thermal engineering, 2016, 99: 1225-1235. DOI: 10.1016/j.applthermaleng.2016.02.026.
[31] CHEN C Z, WANG L G, HUANG Y.Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends[J]. Applied energy, 2011, 88(9): 3133-3139. DOI: 10.1016/j.apenergy.2011.02.026.
[32] CHEN C Z, ZHAO Y Y, LIU W M.Electrospun polyethylene glycol/cellulose acetate phase change fibers with core-sheath structure for thermal energy storage[J]. Renewable energy, 2013, 60: 222-225. DOI: 10.1016/ j.renene.2013.05.020.
[33] DANG T T, NGUYEN T T T, CHUNG O H, et al. Fabrication of form-stable poly(ethylene glycol)-loaded poly(vinylidene fluoride) nanofibers via single and coaxial electrospinning[J]. Macromolecular research, 2015, 23(9): 819-829. DOI: 10.1007/s13233-015-3109-y.
[34] LU P, CHEN W S, FAN J J, et al.Thermally triggered nanocapillary encapsulation of lauric acid in polystyrene hollow fibers for efficient thermal energy storage[J]. ASC sustainable chemistry & engineering, 2018, 6(2): 2656-2666. DOI: 10.1021/acssuschemeng.7b04259.
[35] NGUYEN T T T, LEE J G, PARK J S. Fabrication and characterization of coaxial electrospun polyethylene glycol/polyvinylidene fluoride (core/sheath) composite non-woven mats[J]. Macromolecular research, 2011, 19(4): 370-378. DOI: 10.1007/s13233-011-0409-8.
[36] BABAPOOR A, KARIMI G, GOLESTANEH S I, et al.Coaxial electro-spun PEG/PA6 composite fibers: fabrication and characterization[J]. Applied thermal engineering, 2017, 118: 398-407. DOI: 10.1016/j.applthermaleng.2017.02.119.
[37] REZAEI B, GHANI M, ASKARI M, et al.Fabrication of thermal intelligent core/shell nanofibers by the solution coaxial electrospinning process[J]. Advances in polymer technology, 2016, 35(1): 21534. DOI: 10.1002/adv.21534.
[38] CHEN C Z, WANG L G, HUANG Y.Role of Mn of PEG in the morphology and properties of electrospun PEG/CA composite fibers for thermal energy storage[J]. Aiche journal, 2009, 55(3): 820-827. DOI: 10.1002/aic.11708.
[39] VAN DO C, NGUYEN T T T, PARK J S. Fabrication of polyethylene glycol/polyvinylidene fluoride core/shell nanofibers via melt electrospinning and their characteristics[J]. Solar energy materials and solar cells, 2012, 104: 131-139. DOI: 10.1016/j.solmat.2012.04.029.
[40] REZAEI B, ASKARI M, SHOUSHTARI A M, et al.The effect of diameter on the thermal properties of the modeled shape-stabilized phase change nanofibers (PCNs)[J]. Journal of thermal analysis and calorimetry, 2014, 118(3): 1619-1629. DOI: 10.1007/s10973-014-4025-7.
[41] CHEN C Z, WANG L G, HUANG Y.A novel shape-stabilized PCM: electrospun ultrafine fibers based on lauric acid/polyethylene terephthalate composite[J]. Materials letters, 2008, 62(20): 3515-3517. DOI: 10.1016/j.matlet.2008.03.034.
[42] CHEN C Z, WANG L G, HUANG Y.Ultrafine electrospun fibers based on stearyl stearate/polyethylene terephthalate composite as form stable phase change materials[J]. Chemical engineering journal, 2009, 150(1): 269-274. DOI: 10.1016/j.cej.2009.03.007.
[43] CHEN C Z, LIU S S, LIU W M, et al.Synthesis of novel solid-liquid phase change materials and electrospinning of ultrafine phase change fibers[J]. Solar energy materials and solar cells, 2012, 96(1): 202-209. DOI: 10.1016/j.solmat.2011.09.057.
[44] CAI Y B, KE H Z, LIN L, et al.Preparation, morphology and thermal properties of electrospun fatty acid eutectics/ polyethylene terephthalate form-stable phase change ultrafine composite fibers for thermal energy storage[J]. Energy conversion and management, 2012, 64: 245-255. DOI: 10.1016/j.enconman.2012.04.018.
[45] KE H Z, LI D W, WANG X L, et al.Thermal and mechanical properties of nanofibers-based form-stable PCMs consisting of glycerol monostearate and polyethylene terephthalate[J]. Journal of thermal analysis and calorimetry, 2013, 114(1): 101-111. DOI: 10.1007/s10973-012-2856-7.
[46] CAI Y B, SUN G Y, LIU M M, et al.Fabrication and characterization of capric-lauric-palmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval[J]. Solar energy, 2015, 118: 87-95. DOI: 10.1016/j.solener.2015.04.042.
[47] ZHANG Z L, ZHANG X X, SHI H F, et al.Thermo-regulated sheath/core submicron fiber with poly(diethylene glycol hexadecyl ether acrylate) as a core[J]. Textile research journal, 2015, 86(5): 493-501. DOI: 10.1177/0040517515592815.
[48] CHEN W W, WENG W G.Ultrafine lauric-myristic acid eutectic/poly (meta-phenylene isophthalamide) form-stable phase change fibers for thermal energy storage by electrospinning[J]. Applied energy, 2016, 173: 168-176. DOI: 10.1016/j.apenergy.2016.04.061.
[49] KE H Z, LI Y G.A series of electrospun fatty acid ester/polyacrylonitrile phase change composite nanofibers as novel form-stable phase change materials for storage and retrieval of thermal energy[J]. Textile research journal, 2016, 87(19): 2314-2322. DOI: 10.1177/0040517516669078.
[50] KE H Z.Morphology and thermal performance of quaternary fatty acid eutectics/polyurethane/Ag form-stable phase change composite fibrous membranes[J]. Journal of thermal analysis and calorimetry, 2017, 129(3): 1533-1545. DOI: 10.1007/s10973-017-6399-9.
[51] SONG X F, CAI Y B, HUANG C, et al.Cu nanoparticles improved thermal property of form-stable phase change materials made with carbon nanofibers and LA-MA-SA eutectic mixture[J]. Journal of nanoscience and nanotechnology, 2018, 18(4): 2723-2731. DOI: 10.1166/jnn.2018.14361.
[52] ZONG X, CAI Y B, SUN G Y, et al.Fabrication and characterization of electrospun SiO2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/ retrieval[J]. Solar energy materials and solar cells, 2015, 132: 183-190. DOI: 10.1016/j.solmat.2014.08.030.
[53] GOLESTANEH S I, KARIMI G, BABAPOOR A, et al.Thermal performance of co-electrospun fatty acid nanofiber composites in the presence of nanoparticles[J]. Applied energy, 2018, 212: 552-564. DOI: 0.1016/j.apenergy.2017.12.055.
[54] KE H Z, GHULAM M U H, LI Y G, et al. Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy[J]. Renewable energy, 2016, 99: 1-9. DOI: 10.1016/j.renene.2016.06.033.
[55] CAI Y B, GAO C T, XU X L, et al.Electrospun ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy[J]. Solar energy materials and solar cells, 2012, 103: 53-61. DOI: 10.1016/j. solmat.2012.04.031.
[56] KE H Z, CAI Y B, WEI Q F, et al.Electrospun ultrafine composite fibers of binary fatty acid eutectics and polyethylene terephthalate as innovative form‐stable phase change materials for storage and retrieval of thermal energy[J]. International journal of energy research, 2013, 37(6): 657-664. DOI: 10.1002/er.2888.
文章导航

/