[1] SONG Y C, YANG L, ZHAO J F, et al.The status of natural gas hydrate research in China: a review[J]. Renewable and sustainable energy reviews, 2014, 31: 778-791. DOI: 10.1016/j.rser.2013.12.025.
[2] MILKOV A V.Global estimates of hydrate-bound gas in marine sediments: how much is really out there?[J]. Earth-science reviews, 2004, 66(3/4): 183-197. DOI: 10.1016/j.earscirev.2003.11.002.
[3] 唐志远, 胡云亭, 郭清正, 等. 天然气水合物勘探开发新技术进展[J]. 地球物理学进展, 2015, 30(2): 805-816. DOI: 106038/pg20150244.
[4] 皮光林, 王敏生, 光新军, 等. 我国天然气水合物勘探开发行业现状、挑战与对策[J]. 中国矿业, 2018, 27(4): 1-5.
[5] 尹聪, 兰丽茜, 王芳. 海洋天然气水合物勘探方法综述[J]. 海洋开发与管理, 2015, 32(1): 27-29. DOI: 10.3969/j.issn.1005-9857.2015.01.007.
[6] 岳振欢, 童思友, 吴志强, 等. 地震多参数约束下的真假BSR识别[J]. 海洋地质前沿, 2012, 28(12): 60-66. DOI: 10.16028/j.1009-2722.2012.12.011.
[7] 王启. 海底天然气水合物的CSEM响应研究[D]. 青岛: 中国海洋大学, 2014.
[8] 孙运宝, 赵铁虎, 秦轲. MTD引起的水合物解释陷阱——以神狐海域为例[J]. 海洋地质前沿, 2015, 31(6): 36-43. DOI: 10.16028/j.1009-2722.2015.06006.
[9] 牛滨华, 文鹏飞, 温宁, 等. 基于BSR的AVO正演估算水合物含量方法的研究[J]. 地球物理学报, 2006, 49(1): 143-152. DOI: 10.3321/j.issn:0001-5733.2006.01.020.
[10] 张秀丽. 海洋CSEM法估算海底天然气水合物饱和度研究[D]. 青岛: 中国海洋大学, 2014.
[11] 李丽松, 苗琦. 天然气水合物勘探开发技术发展综述[J]. 天然气与石油, 2014, 32(1): 67-71. DOI: 10.3969/j.issn.1006-5539.2014.01.018.
[12] 张永勤. 国外天然气水合物勘探现状及我国水合物勘探进展[J]. 探矿工程(岩土钻掘工程), 2010, 37(10): 1-8. DOI: 10.3969/j.issn.1672-7428.2010.10.001.
[13] 张洪涛, 祝有海. 中国冻土区天然气水合物调查研究[J]. 地质通报, 2011, 30(12): 1809-1815. DOI: 10.3969/ j.issn.1671-2552.2011.12.001.
[14] 陈忠, 颜文, 陈木宏, 等. 南海北部大陆坡冷泉碳酸盐结核的发现: 海底天然气渗漏活动的新证据[J]. 科学通报, 2006, 51(9): 1065-1072. DOI: 10.3321/j.issn: 0023-074X.2006.09.011.
[15] 宋海斌, 松林修, 吴能友, 等. 海洋天然气水合物的地球物理研究(I): 岩石物性[J]. 地球物理学进展, 2001, 16(2): 118-126. DOI: 10.3969/j.issn.1004-2903.2001.02.015.
[16] MARKL R G, BRYAN G M, EWING J I.Structure of the Blake-Bahama outer ridge[J]. Journal of geophysical research, 1970, 75(24): 4539-4555. DOI: 10.1029/ JC075i024p04539.
[17] GREGORY A R.Fluid saturation effects on dynamic elastic properties of sedimentary rocks[J]. Geophysics, 1976, 41(5): 895-921. DOI: 10.1190/1.1440671.
[18] 宋海斌, 张岭, 江为为, 等. 海洋天然气水合物的地球物理研究(III): 似海底反射[J]. 地球物理学进展, 2003, 18(2): 182-187. DOI: 10.3969/j.issn.1004-2903.2003.02.002.
[19] HEIN J R, SCHOLL D W, BARRON J A, et al.Diagenesis of late Cenozoic diatomaceous deposits and formation of the bottom simulating reflector in the southern Bering Sea[J]. Sedimentology, 1978, 25(2): 155-181. DOI: 10.1111/j.1365-3091.1978.tb00307.x.
[20] HAACKE R R, WESTBROOK G K, HYNDMAN R D.Gas hydrate, fluid flow and free gas: Formation of the bottom-simulating reflector[J]. Earth and planetary science letters, 2007, 261(3/4): 407-420. DOI: 10.1016/ j.epsl.2007.07.008.
[21] 杨睿, 吴能友, 白杰, 等. 南海北部无明显BSR地区天然气水合物识别研究[J]. 地球物理学进展, 2013, 28(2): 1033-1040. DOI: 10.6038/pg20130257.
[22] 赵丽娅. 天然气水合物勘探方法BSR的探讨和研究[J]. 科技创新导报, 2008(3): 77. DOI: 10.3969/j.issn. 1674-098X.2008.03.058.
[23] 杨金秀, DAVIES R, 肖佃师, 等. BSR及其下伏游离气区的分布特征与控制因素[J]. 石油与天然气地质, 2016, 37(1): 87-92. DOI: 10.11743/ogg20160112.
[24] 沙志彬, 杨木壮, 梁金强, 等. BSR的反射波特征及其对天然气水合物识别的应用[J]. 南海地质研究, 2003(1): 55-61.
[25] 姜辉, 岑芳, 于兴河. 天然气水合物BSR的影响因素分析[J]. 天然气工业, 2008, 28(1): 64-66. DOI: 10.3787/j.issn.1000-0976.2008.01.016.
[26] ECKER C.Seismic characterization of methane hydrate structures[D]. California: Stanford University, 1998.
[27] HYNDMAN R D, DAVIS E E.A mechanism for the formation of methane hydrate and seafloor bottom- simulating reflectors by vertical fluid expulsion[J]. Journal of geophysical research, 1992, 97(B5): 7025-7041. DOI: 10.1029/91JB03061.
[28] 岳振欢. 海底天然气水合物地震属性分析[D]. 青岛: 中国海洋大学, 2013. DOI: 10.7666/d.D326649.
[29] 王后金, 沙志彬, 梁劲. 南海神狐暗沙海区天然气水合物地震识别特征[J]. 新疆石油地质, 2013, 34(1): 83-87.
[30] AUGUY C, CALVÈS G, CALDERON Y, et al. Seismic evidence of gas hydrates, multiple BSRs and fluid flow offshore Tumbes Basin, Peru[J]. Marine geophysical research, 2017, 38(4): 409-423. DOI: 10.1007/s11001-017-9319-2.
[31] 李广才. 地震叠前AVO反演与天然气水合物识别研究[D]. 北京: 中国地质大学(北京), 2015.
[32] 阮爱国, 李家彪, 初凤友, 等. 海底天然气水合物层界面反射AVO数值模拟[J]. 地球物理学报, 2006, 49(6): 1826-1835. DOI: 10.3321/j.issn:0001-5733.2006.06.031.
[33] 阮爱国, 李湘云. 天然气水合物研究中的AVA方法分析[J]. 海洋学研究, 2006, 24(4): 1-11. DOI: 10.3969/ j.issn.1001-909X.2006.04.001.
[34] 麻纪强, 耿建华. 天然气水合物似海底反射层(BSR)AVA特征: 双相介质模型(英文)[J]. 应用地球物理, 2008, 5(1): 57-66. DOI: 10.1007/s11770-008-0002-x.
[35] 张如伟, 张宝金, 黄捍东, 等. 天然气水合物沉积层的AVA特征[J]. 石油地球物理勘探, 2011, 46(4): 634-639. DOI: 10.13810/j.cnki.issn.1000-7210.2011.04.005.
[36] ECKER C, DVORKIN J, NUR A.Sediments with gas hydrates: internal structure from seismic AVO[J]. Geophysics, 1998, 63(5): 1659-1669. DOI: 10.1190/1.1444462.
[37] 吴志强, 文丽, 童思友, 等. 海域天然气水合物的地震研究进展[J]. 地球物理学进展, 2007, 22(1): 218-227. DOI: 10.3969/j.issn.1004-2903.2007.01.031.
[38] 马海. 天然气水合物储层AVO响应分析[D]. 青岛: 中国海洋大学, 2013. DOI: 10.7666/d.D326647.
[39] EHSAN M I, AHMED N, DIN Z U, et al.An application of AVO derived attributes to analyze seismic anomalies of gas hydrate bearing sediments in Makran offshore, Pakistan[J]. Acta geodaetica et geophysica, 2016, 51(4): 671-683. DOI: 10.1007/s40328-015-0146-0.
[40] WANG X C, PAN D Y.Application of AVO attribute inversion technology to gas hydrate identification in the Shenhu Area, South China Sea[J]. Marine and petroleum geology, 2017, 80: 23-31. DOI: 10.1016/j.marpetgeo. 2016.11.015.
[41] CHEN M A P, RIEDEL M, HYNDMAN R D, et al. AVO inversion of BSRs in marine gas hydrate studies[J]. Geophysics, 2007, 72(2): C31-C43. DOI: 10.1190/ 1.2435604.
[42] ARUN K P, SAIN K, KUMAR J.Elastic parameters from constrained AVO inversion: application to a BSR in the Mahanadi offshore, India[J]. Journal of natural gas science and engineering, 2018, 50: 90-100. DOI: 10.1016/j.jngse.2017.10.025.
[43] YI B Y, LEE G H, HOROZAL S, et al.Qualitative assessment of gas hydrate and gas concentrations from the AVO characteristics of the BSR in the Ulleung Basin, East Sea (Japan Sea)[J]. Marine and petroleum geology, 2011, 28(10): 1953-1966. DOI: 10.1016/j.marpetgeo. 2010.12.001.
[44] QIAN J, WANG X J, WU S G, et al.AVO analysis of BSR to assess free gas within fine-grained sediments in the Shenhu area, South China Sea[J]. Marine geophysical research, 2014, 35(2): 125-140. DOI: 10.1007/s11001- 014-9214-z.
[45] MAJUMDAR U, COOK A E, SHEDD W, et al.The connection between natural gas hydrate and bottom- simulating reflectors[J]. Geophysical research letters, 2016, 43(13): 7044-7051. DOI: 10.1002/2016GL069443.
[46] 王涛. 海底天然气水合物的海洋CSEM法CMP域反演研究[D]. 青岛: 中国海洋大学, 2015.
[47] 丁继才, 沈劲松, 翁斌, 等. 海洋可控源电磁勘探技术及发展趋势[C]//中国石油学会2015年物探技术研讨会论文集. 宜昌: 中国石油学会石油物探专业委员会, 2015.
[48] 王启. 拖曳式海洋CSEM法探测海底天然气水合物的有效性研究[J]. 南海地质研究, 2015(1): 78-86.
[49] 王猛, 张汉泉, 伍忠良, 等. 勘查天然气水合物资源的海洋可控源电磁发射系统[J]. 地球物理学报, 2013, 56(11): 3708-3717. DOI: 10.6038/cjg20131112.
[50] 陈凯, 景建恩, 赵庆献, 等. 海底可控源电磁接收机及其水合物勘查应用[J]. 地球物理学报, 2017, 60(11): 4262-4272. DOI: 10.6038/cjg20171114.
[51] 胡小群, 李斌, 黄涛, 等. 海洋可控源电磁勘探技术[J]. 海洋石油, 2012, 32(3): 13-17. DOI: 10.3969/j.issn. 1008-2336.2012.03.013.
[52] EDWARDS R N, CHEESMAN S J.Two-dimensional modelling of a towed transient magnetic dipole-dipole sea floor EM system[J]. Journal of Geophysics Zeitschrift fur Geophysik, 1987, 61: 110-121.
[53] YUAN J, EDWARDS R N.The assessment of marine gas hydrates through electrical remote sounding: hydrate without a BSR?[J]. Geophysical research letters, 2000, 27(16): 2397-2400. DOI: 10.1029/2000GL011585.
[54] SCHWALENBERG K, WILLOUGHBY E, MIR R, et al.Marine gas hydrate electromagnetic signatures in Cascadia and their correlation with seismic blank zones[J]. First break, 2005, 23(4): 57-63.
[55] SCHWALENBERG K, HAECKEL M, POORT J, et al.Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics: results from Opouawe Bank, Hikurangi Margin, New Zealand[J]. Marine geology, 2010, 272(1/4): 79-88. DOI: 10.1016/j. margeo.2009.07.006.
[56] MIR R.Design and deployment of a controlled source EM instrument on the NEPTUNE observatory for long-term monitoring of methane hydrate deposits[D]. Toronto: University of Toronto (Canada), 2011.
[57] WEITEMEYER K A, CONSTABLE S C, KEY K W, et al.First results from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon[J]. Geophysical research letters, 2006, 33(3): L03304. DOI: 10.1029/2005GL024896.
[58] WEITEMEYER K A, CONSTABLE S, TRÉHU A M. A marine electromagnetic survey to detect gas hydrate at Hydrate Ridge, Oregon[J]. Geophysical journal international, 2011, 187(1): 45-62. DOI: 10.1111/j.1365-246X.2011.05105.x.
[59] WEITEMEYER K.Marine EM techniques for gas- hydrate detection and hazard mitigation[J]. The leading edge, 2006, 25(5): 629-632. DOI: 10.1190/1.2202668.
[60] HSU S K, CHIANG C W, EVANS R L, et al.Marine controlled source electromagnetic method used for the gas hydrate investigation in the offshore area of SW Taiwan[J]. Journal of Asian earth sciences, 2014, 92: 224-232. DOI: 10.1016/j.jseaes.2013.12.001.
[61] KEY K.Marine Electromagnetic studies of seafloor resources and tectonics[J]. Surveys in geophysics, 2011, 33(1): 135-167. DOI: 10.1007/s10712-011-9139-x.
[62] YAMANE K, SAEKI T, INAMORI T.Feasibility study of marine controlled-source electromagnetic for gas hydrate[C]//The 11th International Symposium on Recent Advances in Exploration Geophysics. April 2007. DOI: 10.3997/2352-8265.20140089.
[63] ZHAO L X, GENG J H, ZHANG S Y, et al.1-D controlled source electromagnetic forward modeling for marine gas hydrates studies[J]. Applied geophysics, 2008, 5(2): 121-126. DOI: 10.1007/s11770-008-0012-8.
[64] LEE K H, JANG H, JANG H, et al.Sensitivity analysis of marine controlled-source electromagnetic methods to a shallow gas-hydrate layer with 1D forward modeling[J]. Geosciences journal, 2011, 15(3): 297-303. DOI: 10.1007/s12303-011-0030-z.
[65] HARINARAYANA T, HARDAGE B, ORANGE A.Controlled-source marine electromagnetic 2-D modeling gas hydrate studies[J]. Marine geophysical research, 2012, 33(3): 239-250. DOI: 10.1007/s11001-012-9159-z.
[66] 韩波, 胡祥云, SCHULTZ A, 等. 复杂场源形态的海洋可控源电磁三维正演[J]. 地球物理学报, 2015, 58(3): 1059-1071. DOI: 10.6038/cjg20150330.
[67] 盛堰, 邓明, 魏文博, 等. 海洋电磁探测技术发展现状及探测天然气水合物的可行性[J]. 工程地球物理学报, 2012, 9(2): 127-133. DOI: 10.3969/j.issn.1672-7940. 2012.02.001.
[68] 刘婷婷, 李予国. 海洋可控源电磁法对天然气水合物高阻薄层的可探测度[J]. 海洋地质前沿, 2015, 31(6): 17-22. DOI: 10.16028/j.1009-2722.2015.06003.
[69] 蔡骥, 李予国. 时间域可控源电磁法探测海底天然气水合物可行性分析[J]. 海洋地质与第四纪地质, 2016, 36(1): 159-163. DOI: 10.16562/j.cnki.0256-1492.2016.01.016.
[70] 景建恩, 伍忠良, 邓明, 等. 南海天然气水合物远景区海洋可控源电磁探测试验[J]. 地球物理学报, 2016, 59(7): 2564-2572. DOI: 10.6038/cjg20160721.
[71] 王猛, 邓明, 伍忠良, 等. 新型坐底式海洋可控源电磁发射系统及其海试应用[J]. 地球物理学报, 2017, 60(11): 4253-4261. DOI: 10.6038/cjg20171113.
[72] SCHWALENBERG K, WOOD W, PECHER I, et al.Preliminary interpretation of electromagnetic, heat flow, seismic, and geochemical data for gas hydrate distribution across the Porangahau Ridge, New Zealand[J]. Marine geology, 2010, 272(1/4): 89-98. DOI: 10.1016/j.margeo.2009.10.024.
[73] SCHWALENBERG K, RIPPE D, KOCH S, et al.Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand[J]. Journal of geophysical research, 2017, 122(5): 3334-3350. DOI: 10.1002/2016JB013702.
[74] 方慧, 孙忠军, 徐明才, 等. 冻土区天然气水合物勘查技术研究主要进展与成果[J]. 物探与化探, 2017, 41(6): 991-997. DOI: 10.11720/wtyht.2017.6.01.
[75] 方慧, 裴发根, 何梅兴, 等. 音频大地电磁测深法探测冻土区天然气水合物有效性实验[J]. 物探与化探, 2017, 41(6): 1068-1074. DOI: 10.11720/wtyht.2017.6.11.
[76] GOSWAMI B K, WEITEMEYER K A, MINSHULL T A, et al.A joint electromagnetic and seismic study of an active pockmark within the hydrate stability field at the Vestnesa Ridge, West Svalbard margin[J]. Journal of geophysical research, 2015, 120(10): 6797-6822. DOI: 10.1002/2015JB012344.
[77] GOSWAMI B K, WEITEMEYER K A, BÜNZ S, et al. Variations in pockmark composition at the Vestnesa Ridge: insights from marine controlled source electromagnetic and seismic data[J]. Geochemistry, geophysics, geosystems, 2017, 18(3): 1111-1125. DOI: 10.1002/2016GC006700.
[78] ATTIAS E, WEITEMEYER K, MINSHULL T A, et al.Controlled-source electromagnetic and seismic delineation of subseafloor fluid flow structures in a gas hydrate province, offshore Norway[J]. Geophysical journal international, 2016, 206(2): 1093-1110. DOI: 10.1093/gji/ggw188.
[79] HOVERSTEN G M, CASSASSUCE F, GASPERIKOVA E, et al.Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data[J]. Geophysics, 2006, 71(3): C1-C13. DOI: 10.1190/1.2194510.
[80] HOU Z S, RUBIN Y, HOVERSTEN G M, et al.Reservoir-parameter identification using minimum relative entropy-based Bayesian inversion of seismic AVA and marine CSEM data[J]. Geophysics, 2006, 71(6): O77-O88. DOI: 10.1190/1.2348770.
[81] CHEN J S, HOVERSTEN G M.Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields[J]. Geophysics, 2012, 77(1): R65-R80. DOI: 10.1190/geo2011- 0219.1.
[82] DU Z, MACGREGOR L.Reservoir parameter estimation from joint inversion of marine CSEM and seismic AVO data using the genetic algorithms[C]// Proceedings of the 71st EAGE Conference and Exhibition Incorporating SPE EUROPEC, Amsterdam, The Netherlands, June 8-11 2009. DOI: 10.3997/2214-4609.201400494.
[83] 李刚. 海洋可控源电磁与地震资料构造联合反演方法研究[D]. 青岛: 中国海洋大学, 2015.
[84] 杜润林. 海洋可控源电磁场和地震波场联合反演方法研究[D]. 青岛: 中国石油大学(华东), 2015.
[85] 徐凯军, 杜润林, 刘展. 海洋可控源电磁与地震一维联合储层参数反演[J]. 石油地球物理勘探, 2016, 51(1): 197-203. DOI: 10.13810/j.cnki.issn.1000-7210.2016.01.025.
[86] 黄国成. 海底天然气水合物资源勘探流程和评价方法[D]. 武汉: 中国地质大学, 2008.