[1] MIKA L T, CSÉFALVAY E, NÉMETH A. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chemical reviews, 2018, 118(2): 505-613. DOI: 10.1021/acs.chemrev.7b00395.
[2] LI C Z, ZHAO X C, WANG A Q, et al.Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical reviews, 2015, 115(21): 11559-11624. DOI: 10.1021/acs.chemrev.5b00155.
[3] LANGE H, DECINA S, CRESTINI C.Oxidative upgrade of lignin - recent routes reviewed[J]. European polymer journal, 2013, 49(6): 1151-1173. DOI: 10.1016/j.eurpolymj.2013.03.002.
[4] GALKIN M V, SMIT A T, SUBBOTINA E, et al.Hydrogen-free catalytic fractionation of woody biomass[J]. ChemSusChem, 2016, 9(23): 3280-3287. DOI: 10.1002/cssc.201600648.
[5] VAN DEN BOSCH S, SCHUTYSER W, VANHOLME R, et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps[J]. Energy & environmental science, 2015, 8(6): 1748-1763. DOI: 10.1039/c5ee00204d.
[6] BEHLING R, VALANGE S, CHATEL G.Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends?[J]. Green chemistry, 2016, 18(7): 1839-1854. DOI: 10.1039/c5gc03061g.
[7] RENDERS T, VAN DEN BOSCH S, KOELEWIJN S F, et al. Lignin-first biomass fractionation: the advent of active stabilisation strategies[J]. Energy & environmental science, 2017, 10(7): 1551-1557. DOI: 10.1039/C7EE01298E.
[8] SONG Q, WANG F, CAI J Y, et al.Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process[J]. Energy & environmental science, 2013, 6(3): 994-1007. DOI: 10.1039/c2ee23741e.
[9] DENG H B, LIN L, SUN Y, et al.Activity and stability of perovskite-type oxide LaCoO3 catalyst in lignin catalytic wet oxidation to aromatic aldehydes process[J]. Energy fuels, 2009, 23(1): 19-24. DOI: 10.1021/ef8005349.
[10] ZAKZESKI J, DĘBCZAK A, BRUIJNINCX P C A, et al. Catalytic oxidation of aromatic oxygenates by the heterogeneous catalyst Co-ZIF-9[J]. Applied catalysis A: general, 2011, 394(1/2): 79-85. DOI: 10.1016/j.apcata.2010.12.026.
[11] SALES F G, ABREU C A M, PEREIRA J A F R. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production[J]. Brazilian journal of chemical engineering, 2004, 21(2): 211-218. DOI: 10.1590/S0104-66322004000200010.
[12] WERHAN H, ASSMANN N, VON ROHR P R. Lignin oxidation studies in a continuous two-phase flow microreactor[J]. Chemical engineering and processing: process intensification, 2013, 73: 29-37. DOI: 10.1016/j.cep.2013.06.015.
[13] ZAKZESKI J, JONGERIUS A L, WECKHUYSEN B M.Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids[J]. Green chemistry, 2010, 12(7): 1225-1236. DOI: 10.1039/c001389g.
[14] FACHE M, BOUTEVIN B, CAILLOL S.Vanillin production from lignin and its use as a renewable chemical[J]. ACS sustainable chemistry & engineering, 2016, 4(1): 35-46. DOI: 10.1021/acssuschemeng.5b01344.
[15] RAUTIAINEN S, CHEN J J, VEHKAMÄKI M, et al. Oxidation of vanillin with supported gold nanoparticles[J]. Topics in catalysis, 2016, 59(13/14): 1138-1142. DOI: 10.1007/s11244-016-0633-8.
[16] PATIL D G, MAGDUM P A, NANDIBEWOOR S T.Mechanistic investigations of uncatalyzed and Ruthenium(III) catalyzed oxidation of vanillin by periodate in aqueous alkaline medium[J]. Journal of solution chemistry, 2015, 44(6): 1205-1223. DOI: 10.1007/s10953-015-0341-1.
[17] FACHE M, BOUTEVIN B, CAILLOL S.Vanillin, a key-intermediate of biobased polymers[J]. European polymer journal, 2015, 68: 488-502. DOI: 10.1016/j.eurpolymj.2015.03.050.
[18] LEOPOLD B, MALMSTRӦM I L. Studies on Lignin. IV. Investigation on the nitrobenzene oxidation products of lignin from different woods by paper partition chromatography[J]. Acta chemica scandinavica, 1952, 6: 49-54. DOI: 10.3891/acta.chem.scand.06-0049.
[19] BORGES DA SILVA E A, ZABKOVA M, ARAÚJO J D, et al. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin[J]. Chemical engineering research and design, 2009, 87(9): 1276-1292. DOI: 10.1016/j.cherd.2009.05.008.
[20] TARABANKO V E, PERVISHINA E P, HENDOGINA Y V.Kinetics of aspen wood oxidation by oxygen in alkaline media[J]. Reaction kinetics and catalysis letters, 2001, 72(1): 153-162. DOI: 10.1023/A:1010553118997.
[21] RAHIMI A, AZARPIRA A, KIM H, et al.Chemoselective metal-free aerobic alcohol oxidation in lignin[J]. Journal of the American chemical society, 2013, 135(17): 6415-6418. DOI: 10.1021/ja401793n.
[22] TARABANKO V E, KAYGORODOV K L, SKIBA E A, et al.Processing pine wood into vanillin and glucose by sequential catalytic oxidation and enzymatic hydrolysis[J]. Journal of wood chemistry and technology, 2017, 37(1): 43-51. DOI: 10.1080/02773813.2016.1235583.
[23] XIANG Q, LEE Y Y.Production of oxychemicals from precipitated hardwood lignin[J]. Applied biochemistry and biotechnology, 2001, 91(1/9): 71-80. DOI: 10.1385/ABAB:91-93:1-9:71.
[24] SCHUTYSER W, RENDERS T, VAN DEN BOSCH S, et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading[J]. Chemical society reviews, 2018, 47(3): 852-908. DOI: 10.1039/c7cs00566k.
[25] DENG W P, ZHANG H X, WU X J, et al.Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles[J]. Green chemistry, 2015, 17(11): 5009-5018. DOI: 10.1039/C5GC01473E.
[26] TARASOV A L, KUSTOV L M, BOGOLYUBOV A A, et al.New and efficient procedure for the oxidation of dioxybenzylic alcohols into aldehydes with Pt and Pd-based catalysts under flow reactor conditions[J]. Applied catalysis A: general, 2009, 366(2): 227-231. DOI: 10.1016/j.apcata.2009.06.025.
[27] SHILPY M, EHSAN M A, ALI T H, et al.Performance of cobalt titanate towards H2O2 based catalytic oxidation of lignin model compound[J]. RSC advances, 2015, 5(97): 79644-79653. DOI: 10.1039/c5ra14227j.
[28] DEMESA A G, LAARI A, TURUNEN I, et al.Alkaline partial wet oxidation of lignin for the production of carboxylic acids[J]. Chemical engineering & technology, 2015, 38(12): 2270-2278. DOI: 10.1002/ceat.201400660.
[29] KLINKE H B, AHRING B K, SCHMIDT A S, et al.Characterization of degradation products from alkaline wet oxidation of wheat straw[J]. Bioresource technology, 2002, 82(1): 15-26. DOI: 10.1016/S0960-8524(01)00152-3.
[30] KNILL C J, KENNEDY J F.Degradation of cellulose under alkaline conditions[J]. Carbohydrate polymers, 2003, 51(3): 281-300. DOI: 10.1016/S0144-8617(02)00183-2.
[31] OUYANG X P, RUAN T, QIU X Q.Effect of solvent on hydrothermal oxidation depolymerization of lignin for the production of monophenolic compounds[J]. Fuel processing technology, 2016, 144: 181-185. DOI: 10.1016/j.fuproc.2015.12.019.
[32] ROBERTS V M, STEIN V, REINER T, et al.Towards quantitative catalytic lignin depolymerization[J]. Chemistry, 2011, 17(21): 5939-5948. DOI: 10.1002/chem.201002438.
[33] TARABANKO V E, PETUKHOV D V, SELYUTIN G E.New mechanism for the catalytic oxidation of lignin to vanillin[J]. Kinetics and catalysis, 2004, 45(4): 569-577. DOI: 10.1023/B:KICA.0000038087.95130.a5.
[34] AUGUGLIARO V, CAMERA-RODA G, LODDO V, et al. Synthesis of vanillin in water by TiO2 photocatalysis[J]. Applied catalysis B: environmental, 2012, 111-112: 555-561. DOI: 10.1016/j.apcatb.2011.11.007.
[35] FARGUES C, MATHIAS Á, SILVA J, et al.Kinetics of vanillin oxidation[J]. Chemical engineering & technology, 1996, 19(2): 127-136. DOI: 10.1002/ceat.270190206.
[36] MATHIAS A L, RODRIGUES A B.Production of vanillin by oxidation of pine kraft lignins with oxygen[J]. Holzforschung, 1995, 49(3): 273-278. DOI: 10.1515/hfsg. 1995.49.3.273.
[37] ARAÚJO J D P, GRANDE C A, RODRIGUES A E. Vanillin production from lignin oxidation in a batch reactor[J]. Chemical engineering research and design, 2010, 88(8): 1024-1032. DOI: 10.1016/j.cherd.2010.01.021.
[38] FARGUES C, MATHIAS Á, RODRIGUES A.Kinetics of vanillin production from kraft lignin oxidation[J]. Industrial & engineering chemistry research, 1996, 35(1): 28-36. DOI: 10.1021/ie950267k.