欢迎访问《新能源进展》官方网站!今天是

碱氧化松木制取单酚化学品

展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 泰国朱拉隆功大学科学学院化学技术系,曼谷 10330;
    5. 中国科学院大学,北京 100049
朱妤婷(1992-),女,硕士研究生,主要从事生物质高值化利用研究。刘 竞(1993-),男,硕士研究生,主要从事木质素催化转化为高附加值化学品研究。吕 微(1984-),女,在职博士研究生,助理研究员,主要从事生物油催化催化改制研究。王晨光(1981-),男,博士,研究员,博士生导师,主要从事生物质定向转化的催化新技术研究。REUBROYCHAROEN Prasert(1980-),男,博士,教授,博士生导师,主要从事多相催化与化学反应工程研究。

收稿日期: 2018-05-05

  修回日期: 2018-06-12

  网络出版日期: 2018-12-24

基金资助

国家自然科学基金项目(51476175,51606205,51536009); 中国科学院百人计划项目(y507y51001)

Alkaline Oxidation of Pine Wood to Monophenols

Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
    5. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-05-05

  Revised date: 2018-06-12

  Online published: 2018-12-24

摘要

木质素制取单酚是实现木质素高值化的重要策略之一。研究了松木在温和条件下经碱氧化处理高效转化为香兰素和其他单酚,并将碳水化合物作为固体残渣保留。氢氧化钠浓度、搅拌速度和氧气压力等参数对单酚化合物和固体残渣收率的影响显著,特别是搅拌速度。在1 100 r/min的高搅拌速度下,松木在碱溶液中几乎完全溶解,单酚收率较低(15%)。搅拌速度的降低有助于提高固体残渣和单酚的收率。在低NaOH浓度下,适当的搅拌速度可以获得最高的单酚产量(25.8wt.%)。此外,还研究了在碱性有氧条件下香草醛的降解。研究发现,香草醛分解为小分子量羧酸,或缩合成分子量较高的产物,表明在碱性氧化过程中香草醛氧化是单酚收率降低的重要原因。

本文引用格式

朱妤婷, 刘竞, 吕微, REUBROYCHAROEN Prasert, 王晨光 . 碱氧化松木制取单酚化学品[J]. 新能源进展, 2018 , 6(6) : 482 -489 . DOI: 10.3969/j.issn.2095-560X.2018.06.004

Abstract

Preparation of monophenols from lignin is one of the most popular strategies for lignin valorization. Here, pine wood was efficiently converted into vanillin and other monophenols by alkaline oxidation of pine wood under mild conditions, and left carbohydrates as solid residue. NaOH concentration, oxygen pressure, and especially agitation speed had significant impacts on the conversion of lignin to monophenols and solid residue yield, Pine wood was almost dissolved in the alkali solution and low monophenols yield (15%) was obtained at high agitation speed of 1 100 r/min. Decreasing agitation speed increased the reservation of solid carbohydrates and monophenols yields. At an agitation speed of 50 r/min, a highest monphenols yield (25.8wt.%) was obtained at a low NaOH concentration of 7.5wt.%. In addition, the degradation of vanillin under alkaline aerobic conditions was investigated. It was found that vanillin decomposed to carboxylic acids from small molecules to higher molecular weight products. Therefore, over oxidation of vanillin is an important cause of reduction of monophenol yields during the alkaline oxidation.

参考文献

[1] MIKA L T, CSÉFALVAY E, NÉMETH A. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chemical reviews, 2018, 118(2): 505-613. DOI: 10.1021/acs.chemrev.7b00395.
[2] LI C Z, ZHAO X C, WANG A Q, et al.Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical reviews, 2015, 115(21): 11559-11624. DOI: 10.1021/acs.chemrev.5b00155.
[3] LANGE H, DECINA S, CRESTINI C.Oxidative upgrade of lignin - recent routes reviewed[J]. European polymer journal, 2013, 49(6): 1151-1173. DOI: 10.1016/j.eurpolymj.2013.03.002.
[4] GALKIN M V, SMIT A T, SUBBOTINA E, et al.Hydrogen-free catalytic fractionation of woody biomass[J]. ChemSusChem, 2016, 9(23): 3280-3287. DOI: 10.1002/cssc.201600648.
[5] VAN DEN BOSCH S, SCHUTYSER W, VANHOLME R, et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps[J]. Energy & environmental science, 2015, 8(6): 1748-1763. DOI: 10.1039/c5ee00204d.
[6] BEHLING R, VALANGE S, CHATEL G.Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends?[J]. Green chemistry, 2016, 18(7): 1839-1854. DOI: 10.1039/c5gc03061g.
[7] RENDERS T, VAN DEN BOSCH S, KOELEWIJN S F, et al. Lignin-first biomass fractionation: the advent of active stabilisation strategies[J]. Energy & environmental science, 2017, 10(7): 1551-1557. DOI: 10.1039/C7EE01298E.
[8] SONG Q, WANG F, CAI J Y, et al.Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process[J]. Energy & environmental science, 2013, 6(3): 994-1007. DOI: 10.1039/c2ee23741e.
[9] DENG H B, LIN L, SUN Y, et al.Activity and stability of perovskite-type oxide LaCoO3 catalyst in lignin catalytic wet oxidation to aromatic aldehydes process[J]. Energy fuels, 2009, 23(1): 19-24. DOI: 10.1021/ef8005349.
[10] ZAKZESKI J, DĘBCZAK A, BRUIJNINCX P C A, et al. Catalytic oxidation of aromatic oxygenates by the heterogeneous catalyst Co-ZIF-9[J]. Applied catalysis A: general, 2011, 394(1/2): 79-85. DOI: 10.1016/j.apcata.2010.12.026.
[11] SALES F G, ABREU C A M, PEREIRA J A F R. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production[J]. Brazilian journal of chemical engineering, 2004, 21(2): 211-218. DOI: 10.1590/S0104-66322004000200010.
[12] WERHAN H, ASSMANN N, VON ROHR P R. Lignin oxidation studies in a continuous two-phase flow microreactor[J]. Chemical engineering and processing: process intensification, 2013, 73: 29-37. DOI: 10.1016/j.cep.2013.06.015.
[13] ZAKZESKI J, JONGERIUS A L, WECKHUYSEN B M.Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids[J]. Green chemistry, 2010, 12(7): 1225-1236. DOI: 10.1039/c001389g.
[14] FACHE M, BOUTEVIN B, CAILLOL S.Vanillin production from lignin and its use as a renewable chemical[J]. ACS sustainable chemistry & engineering, 2016, 4(1): 35-46. DOI: 10.1021/acssuschemeng.5b01344.
[15] RAUTIAINEN S, CHEN J J, VEHKAMÄKI M, et al. Oxidation of vanillin with supported gold nanoparticles[J]. Topics in catalysis, 2016, 59(13/14): 1138-1142. DOI: 10.1007/s11244-016-0633-8.
[16] PATIL D G, MAGDUM P A, NANDIBEWOOR S T.Mechanistic investigations of uncatalyzed and Ruthenium(III) catalyzed oxidation of vanillin by periodate in aqueous alkaline medium[J]. Journal of solution chemistry, 2015, 44(6): 1205-1223. DOI: 10.1007/s10953-015-0341-1.
[17] FACHE M, BOUTEVIN B, CAILLOL S.Vanillin, a key-intermediate of biobased polymers[J]. European polymer journal, 2015, 68: 488-502. DOI: 10.1016/j.eurpolymj.2015.03.050.
[18] LEOPOLD B, MALMSTRӦM I L. Studies on Lignin. IV. Investigation on the nitrobenzene oxidation products of lignin from different woods by paper partition chromatography[J]. Acta chemica scandinavica, 1952, 6: 49-54. DOI: 10.3891/acta.chem.scand.06-0049.
[19] BORGES DA SILVA E A, ZABKOVA M, ARAÚJO J D, et al. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin[J]. Chemical engineering research and design, 2009, 87(9): 1276-1292. DOI: 10.1016/j.cherd.2009.05.008.
[20] TARABANKO V E, PERVISHINA E P, HENDOGINA Y V.Kinetics of aspen wood oxidation by oxygen in alkaline media[J]. Reaction kinetics and catalysis letters, 2001, 72(1): 153-162. DOI: 10.1023/A:1010553118997.
[21] RAHIMI A, AZARPIRA A, KIM H, et al.Chemoselective metal-free aerobic alcohol oxidation in lignin[J]. Journal of the American chemical society, 2013, 135(17): 6415-6418. DOI: 10.1021/ja401793n.
[22] TARABANKO V E, KAYGORODOV K L, SKIBA E A, et al.Processing pine wood into vanillin and glucose by sequential catalytic oxidation and enzymatic hydrolysis[J]. Journal of wood chemistry and technology, 2017, 37(1): 43-51. DOI: 10.1080/02773813.2016.1235583.
[23] XIANG Q, LEE Y Y.Production of oxychemicals from precipitated hardwood lignin[J]. Applied biochemistry and biotechnology, 2001, 91(1/9): 71-80. DOI: 10.1385/ABAB:91-93:1-9:71.
[24] SCHUTYSER W, RENDERS T, VAN DEN BOSCH S, et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading[J]. Chemical society reviews, 2018, 47(3): 852-908. DOI: 10.1039/c7cs00566k.
[25] DENG W P, ZHANG H X, WU X J, et al.Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles[J]. Green chemistry, 2015, 17(11): 5009-5018. DOI: 10.1039/C5GC01473E.
[26] TARASOV A L, KUSTOV L M, BOGOLYUBOV A A, et al.New and efficient procedure for the oxidation of dioxybenzylic alcohols into aldehydes with Pt and Pd-based catalysts under flow reactor conditions[J]. Applied catalysis A: general, 2009, 366(2): 227-231. DOI: 10.1016/j.apcata.2009.06.025.
[27] SHILPY M, EHSAN M A, ALI T H, et al.Performance of cobalt titanate towards H2O2 based catalytic oxidation of lignin model compound[J]. RSC advances, 2015, 5(97): 79644-79653. DOI: 10.1039/c5ra14227j.
[28] DEMESA A G, LAARI A, TURUNEN I, et al.Alkaline partial wet oxidation of lignin for the production of carboxylic acids[J]. Chemical engineering & technology, 2015, 38(12): 2270-2278. DOI: 10.1002/ceat.201400660.
[29] KLINKE H B, AHRING B K, SCHMIDT A S, et al.Characterization of degradation products from alkaline wet oxidation of wheat straw[J]. Bioresource technology, 2002, 82(1): 15-26. DOI: 10.1016/S0960-8524(01)00152-3.
[30] KNILL C J, KENNEDY J F.Degradation of cellulose under alkaline conditions[J]. Carbohydrate polymers, 2003, 51(3): 281-300. DOI: 10.1016/S0144-8617(02)00183-2.
[31] OUYANG X P, RUAN T, QIU X Q.Effect of solvent on hydrothermal oxidation depolymerization of lignin for the production of monophenolic compounds[J]. Fuel processing technology, 2016, 144: 181-185. DOI: 10.1016/j.fuproc.2015.12.019.
[32] ROBERTS V M, STEIN V, REINER T, et al.Towards quantitative catalytic lignin depolymerization[J]. Chemistry, 2011, 17(21): 5939-5948. DOI: 10.1002/chem.201002438.
[33] TARABANKO V E, PETUKHOV D V, SELYUTIN G E.New mechanism for the catalytic oxidation of lignin to vanillin[J]. Kinetics and catalysis, 2004, 45(4): 569-577. DOI: 10.1023/B:KICA.0000038087.95130.a5.
[34] AUGUGLIARO V, CAMERA-RODA G, LODDO V, et al. Synthesis of vanillin in water by TiO2 photocatalysis[J]. Applied catalysis B: environmental, 2012, 111-112: 555-561. DOI: 10.1016/j.apcatb.2011.11.007.
[35] FARGUES C, MATHIAS Á, SILVA J, et al.Kinetics of vanillin oxidation[J]. Chemical engineering & technology, 1996, 19(2): 127-136. DOI: 10.1002/ceat.270190206.
[36] MATHIAS A L, RODRIGUES A B.Production of vanillin by oxidation of pine kraft lignins with oxygen[J]. Holzforschung, 1995, 49(3): 273-278. DOI: 10.1515/hfsg. 1995.49.3.273.
[37] ARAÚJO J D P, GRANDE C A, RODRIGUES A E. Vanillin production from lignin oxidation in a batch reactor[J]. Chemical engineering research and design, 2010, 88(8): 1024-1032. DOI: 10.1016/j.cherd.2010.01.021.
[38] FARGUES C, MATHIAS Á, RODRIGUES A.Kinetics of vanillin production from kraft lignin oxidation[J]. Industrial & engineering chemistry research, 1996, 35(1): 28-36. DOI: 10.1021/ie950267k.
文章导航

/